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УДК 

Вещунов М.С. РАЗВИТИЕ ТЕОРИИ ЭВОЛЮЦИИ ГАЗОВОЙ ПОРИСТОСТИ В 
ОБЛУЧЕННОМ UO2 ТОПЛИВЕ. Препринт № IBRAE-98-11. Москва. Институт проблем 
безопасного развития атомной энергетики РАН. Июль 1998. 15 с. — Библиогр.: 33 назв. 

Аннотация 
В настоящей работе на базе имеющихся экспериментальных данных представлен 
критический анализ стандартных подходов при моделировании развития внутри 
зеренной и межзеренной пористости в UO2 топливе. Показано, что главным источником 
ошибок стандартных моделей являются недооценка радиационных эффектов при низких 
температурах (ниже 1500°С) и тепловых эффектов при высоких температурах (выше 
1500°С). Представленный анализ позволяет количественно описать процессы нуклеации 
пузырей, их диффузионного роста, а также вычислить размер и концентрацию 
внутризеренных пузырей, установившиеся в условиях стационарного облучения. 
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EVOLUTION IN IRRADIATED UO2 FUEL. Preprint IBRAE-98-11. Moscow. Nuclear 
Safety Institute. Jule 1998. 15 p. — Refs.: 33 items. 

Abstract 
In the present paper the standard approaches for modelling of the inter- and intragranular 

bubbles evolution in the UO2 fuel are critically analyzed on the basis of available experimental 
data. It is demonstrated that the main source of errors in the simplified treatment of the problem 
by the standard models can be associated with underestimation of the radiation effects at low 
temperatures (below 1500°С) and thermal effects at high temperatures (above 1500°С). The 
presented analysis allows quantitative description of the bubble nucleation mechanism, 
adequate modelling of the bubble diffusional growth, and evaluation of the intragranular bubble 
number density and stable size attained under steady irradiation conditions. 
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I. Introduction 

The influence of fission gases generated in oxide fuels during irradiation on fuel performance has been the 
subject of many investigations over the past 40 years. The fission inert gases are known to precipitate into 
bubbles. The growing bubbles cause the fuel to swell. In addition, fission gas bubbles retained in the fuel on grain 
surfaces and edges can cause radical changes in the fuel microstructure. These changes in the fuel microstructure 
can then result in an enhanced gas release and fuel swelling. 

Any model that attempts a realistic description of fission gas release and swelling as a function of fuel-
fabrication variables and a wide range of reactor operating conditions must treat fission gas release and fuel 
swelling as coupled phenomena and must include many mechanisms influencing fission gas behaviour. Currently, 
the most advanced models which include mechanistic description of these phenomena are the numerical codes 
GRASS-SST [1], FASTGRASS [2], VICTORIA [3]. These codes consider the effects of production of gas from 
fissioning uranium, bubble nucleation, a realistic equation of state for xenon, lattice gas diffusivities based on 
experimental observations, bubble growth, migration and coalescence, re-solution, temperature and temperature 
gradients, interlinked porosity, etc.  

However, some of the basic models of the codes seem to be oversimplified and do not allow realistic 
description of many observed phenomena. The basic assumption of these models is connected with the bubble 
state description by the so called «capillarity» relation and the quasi-stationary approximation for the bubble 
growth based on this relation. Such an approach radically simplifies the theory, since in this case the defect 
structure of the crystal (including point defects, such as vacancies and interstitials, and extended defects, such as 
dislocations) is practically excluded from consideration (with the exception of some simple effects such as 
athermal behaviour of the gas and uranium atom diffusivities in the irradiated crystal).  However, this 
consideration is well grounded only for the description of equilibrium crystals and generally fails under 
irradiation conditions when the fuel matrix is oversaturated with the point defects (vacancies and interstitials).  

In parallel to the fuel behaviour investigations, extensive experimental and theoretical studies of metal crystal 
behaviour under irradiation conditions were carried out (e.g. [4-6]). Results of these investigations 
unambiguously demonstrated a great influence of point defects generated under similar (to the fuel) irradiation 
conditions on the bubble nucleation and growth in metals. However, these results were mainly unaccounted in the 
models dealing with the bubble porosity evolution in the oxide fuel, despite the general character of many 
theoretical conclusions.  

In the present paper an attempt is made to extend the general approach of the irradiated metal description to 
the modelling of the bubble behaviour in the UO2  fuel. It is demonstrated that in some cases  the standard 
approach for the bubble behaviour in the fuel (based on the capillarity relation) can be really used (for example, 
at high temperatures above 1500°C), however, in other cases a more realistic description of bubble interactions 
with non-equilibrium  point defects must be applied. Hence, the radiation effects unaccounted in the models [1-3] 
become especially important in the case of the large bubbles evolution (observed on the grain faces and, after 
temperature transients, in the bulk of the grains), since in these cases the mechanism and rate of the fuel swelling 
and gas release through the open porosity may be strongly underestimated  by the standard approach (see sections 
II and V). 

Naturally, a similar to the metal description approach leads sometimes to quite different results for the fuel, 
since many parameters of the two systems differ significantly. For example, the mechanism of small bubble 
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interactions with fission fragments in the fuel, associated with the bubble relaxation in the short living (∼ 10-11 s) 
molten zone of  fission tracks (considered in section II), can strongly change the intragranular porosity evolution. 
Or, a relatively small value of the self-diffusion coefficient in the fuel (in comparison  with that in metals) leads 
to a significant extension of the initial, so called «recombination» stage of irradiation when the main sink of point 
defects is their mutual recombination. As a result, this allows the direct calculation of the bubble nucleation 
factor (determined in the codes [1-3] as a default value varying in a wide range), or a natural explanation of the 
stabilisation of the bubble number density observed under steady irradiation conditions at T ≤ 1500°C and its 
self-consistent calculation (section III). 

On the other hand, in the case of high temperatures (≥ 1500°C) when radiation effects in the fuel can be 
mainly neglected, the codes [1-3] generally underestimate thermal effects in the fuel, namely, do not consider the 
thermal resolution of gas atoms from bubbles. These effects strongly influence the bubble nucleation mechanism 
which at these temperatures becomes associated with the fluctuation formation of a finite size critical nucleus, as 
well as the bubble evolution in a late stage of irradiation when the thermal resolution apparently determines the 
observed stabilisation of the bubble number density (section IV). 

II. Intragranular porosity: general consideration 

II.1. Standard approach 

In the majority of the currently existing models for the fission gas behaviour in the UO2 fuel, mechanical 
equilibrium state with respect to surface capillary forces of bubbles expressed by the capillarity relation: 

 P - Ph = 2γ/R, (1) 

where P is the internal gas pressure, Ph  is the external hydrostatic pressure, R is the radius of the bubble, γ is the 
surface energy,  is the usual approximation for the description of the growing intragranular bubbles (e.g. see [1-3, 
7-9]). In the case of the deviation from this state, for example, due to coalescence of two bubbles, it is proposed 
that the newly formed bubble quickly attains the equilibrium state after some characteristic relaxation time by the 
vacancy diffusion mechanism. This approach is usually based on the kinetic equation for the diffusional growth 
of  bubbles [10]: 

 dR/dt = (Du /R){1 - exp[(P - Ph - 2γ/R)Ω/kT]}, (2) 

where Du ≈ Dvcv is the U atom self-diffusion coefficient, Dv and cv are the vacancy diffusion coefficient and bulk 
concentration, respectively; Ω is the atomic volume in the UO2 matrix (Ω ≈ 4.1×10-23 cm3). In accordance with 
Eq. (2) the quasi-stationary state of a bubble (dR/dt = 0) is characterised by the capillarity relation, Eq. (1). 

II.2. Correct description 

However, such an approach becomes incorrect in many cases since Eq. (2) is valid only for the equilibrium 
crystals, i.e. when the concentration cv of vacancies does not exceed the thermal equilibrium value cv

eq . 
Otherwise, for crystals oversaturated with the non-equilibrium vacancies more adequate expression has the form 
[11]:  

 dR/dt = (Du /R){1 - (cv
eq/cv)exp[(P - Ph  - 2γ/R)Ω/kT]}, (3) 

thus, the capillarity relation, Eq. (1) does not anymore correspond to the quasi-stationary state (dR/dt = 0) if  
(cv

eq/ cv) << 1. Moreover, under irradiation conditions the bubble growth is determined also by the diffusion of 
the non-equilibrium interstitials and the correct expression takes the form [4,5]: 

 dR/dt = (Du /R){1 - (βi /βv) - (cv
eq/cv)exp[(P - Ph - 2γ/R)Ω/kT]}, (4) 
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where βi = Di /ci , βv = Dv /cv ;  Di and ci  are the interstitial diffusion coefficient and bulk concentration, 
respectively. 

This equation can be also rewritten in the form: 

 dx/dt = Du x1/3 (3Ω/4π)-2/3(1 - βi /βv){1 -  (cv
eq/cv)(1 - βi /βv)-1exp[(P - Ph - 2γ/R)Ω/kT]}, (5) 

where x is the amount of vacancies comprising the void, i.e. x = (4/3)πR3/Ω. 

As it will be shown below, at T < 1500°C the value of (cv /cv
eq) attains several orders of magnitude (e.g. 

(cv
eq/cv) ≈ 10-4 at T = 1000°C), whereas (1 - βi /βv) ≈ 10-2. Therefore, application of the capillarity relation, 

Eq. (1) becomes invalid under these conditions, since the quasi-stationary state of a bubble (dR/dt = 0) derived 
from Eq. (5) corresponds to a new relation: 

 (P - Ph - 2γ/R)Ω = - kT ln[(cv /cv
eq)(1 - βi /βv)], (6) 

At 1000°C the difference between ∆P = P - Ph and the capillary pressure  2γ/R attains ≈ 10kT/Ω ≈ 10 GPa (!), 
and continues to increase with the  temperature decrease (along with the increase of (cv /cv

eq)). 

At T ≥ 1500°C , as shown below, the radiation induced concentration  cv  really does not exceed the thermal 
equilibrium value  cv

eq, thus, Eq. (2) becomes valid at high temperatures. However, at T ≤ 1500°C application of 
Eq. (4) instead of Eq. (2) for the bubble growth can strongly change the kinetics of the intragranular porosity 
evolution. 

In order to demonstrate this statement, it is sufficient to consider the behaviour of a solely growing bubble 
during a time interval between two subsequent collisions with other bubbles. It should be noted that the Brownian 
mobility of bubbles is considered in many theoretical papers to be significant (mainly on the basis of observations 
[12]), leading to relatively high frequency of mutual collisions. However, in the subsequent tests [13] it was 
clearly demonstrated, that at T ≤ 1800°C the Brownian motion of bubbles is negligibly slow, therefore, the time 
between two subsequent collisions of a bubble (in the absence of temperature gradients in the grain) is really very 
large. In this case the analysis of the behaviour of growing bubbles can be performed on the basis of Eqs. (2) or 
(5) along with a corresponding kinetic equation for the number of gas atoms N in a bubble: 

 dN/dt = Dgcg (3Ω/4π)-2/3 x1/3 [1 - NKg /(Dgcg x1/3 )], (7) 

where Dg and cg are the gas atom diffusion coefficient and bulk concentration, respectively;  Kg is the rate of the 
radiation induced resolution of gas atoms from a bubble; and with the Van-der-Waals equation of state: 

 P(xΩ - bN) = NkT, (8) 

where b ≈ 8.5×10-23 cm3/atom is the Van-der-Waals constant. 

It should be noticed, however, that Eq. (7) based on the usual consideration of the gas subsystem in the 
models [1-3], lacks a term corresponding to the thermal resolution of gas atoms from bubbles. Neglecting of such 
a term is often grounded, however, in many important cases does not allow correct description of the system 
behaviour (in particular, at T > 1500°C, as shown below in section IV). 

II.3. Qualitative analysis of bubble evolution 

It is rather illuminating to perform analysis of the two differential equations (in the simplest case, Eqs. (2) and 
(7)) in terms of the phase portrait of the system, Fig.1 (compare with [14]).  Intersection of two nodal lines 
dx/dt = 0 and dN/dt = 0 determines a critical point I of the stable node type, i.e. particles (gas atoms (N) and 
vacancies (x)) move toward the node from all quadrants in the neighbourhood. In the case of applicability of the 
ideal gas law (instead of more realistic Eq. (8)) the nodal lines are described by relationships N ∝ x2/3 and 
N ∝ x1/3, respectively. The critical point apparently determines parameters of stable bubbles and explains the 
validity of the «bimodal» bubble size distribution, observed in the steady state tests and usually represented by 
the models based on Eqs. (2) and (7). When a bubble deviates from this stable state, diffusion fluxes of the gas 
atoms and point defects arise which return the bubble back to the initial state.  
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In the case when Eq. (2) is substituted by Eq. (5) the nodal line dx/dt = 0 is described by the equation: 

 N = (4π/3)1/3(2γ/kT)(xΩ)2/3- kT ln[(cv /cv
eq)(1 - βi /βv)],  

and changes its form with temperature decrease, Fig.2 (for the sake of simplicity the ideal gas law is used here 
instead of Eq. (8)). At some temperature below 1500°C the second critical point II (of the saddle type) appears 
which can be reached from the first critical point only due to thermal fluctuations and/or collisions of bubbles. 
Along with the further temperature decrease the two points approach to each other and finally disappear. For the 
above presented values of the parameters (cv

eq/cv) ≈ 10-4 and [1 - (βi /βv)] ≈ 10-2  attained at T=1000°C, the 
critical points are knowingly absent, Fig.3. In this situation bubbles grow unrestrictedly (along the dashed line in 
Fig.3), this is generally in contradiction with observations [15-18], which evidence that in the reactor steady 
operation regimes in a wide temperature interval (from 600 to 1800°C) the size of the bubbles stabilise (R ≈ 
5-10 Å) in some period of time.  

II.3.a. Small bubble relaxation mechanism 

The main reason for this discrepancy of the theory with observations is connected with an unaccounted 
additional physical mechanism of bubble interactions with fission fragments. Up-to-now such interactions were 
considered only in the equation for the gas subsystem (i.e. Eq. (7)) in the form of the radiation induced resolution 
of gas atoms from bubbles. However, one should also take into consideration interactions of fission fragments 
with vacancy subsystem which becomes especially important for small bubbles (R ≈ 10 Å). Indeed, in accordance 
with the contemporary microscopic theory of the material interactions with high energy fission particles (see, for 
example, [19]), molten zones appear in the fission fragment tracks during some short time interval τ* ∼ 10-11 s. 
Despite an apparent smallness of this time interval, it appears to be large enough for high temperature annealing 
of a small bubble with R ≈ 10 Å and its (partial) relaxation to the equilibrium state in the molten zone of the track 
with diameter ≈ 70-100 Å. Such a state in the liquid phase is a mechanically equilibrium bubble described by the 
capillarity relation, Eq. (1), and the relaxation time to this state can be estimated as τr ∼ R/vs, where vs is the sound 
velocity in the melt. [This estimation can be deduced in a similar way to the solution of the problem of an empty 
void shrinkage in the incompressible liquid [20] by generalisation to the case of a gas filled void]. Assuming vs ∼ 
103 m/s, R ≈ 10 Å, one gets τr ∼ 10-12 s ≤ τ*. 

The simplest way to account for this mechanism is the introduction in Eq. (5) of an additional term, 
describing bubble relaxation as a result of its collisions with fission fragments. Under an assumption that the path 
volume Vtr is equal to πrtr

2L, where rtr ≈ 50 Å, L ≈ 6×10-4 cm  are the track radius and length, respectively, a mean 
time between collisions of a small bubble with particles is estimated as τ0 ∼ (VtrF)-1 ∼ 102 s, where F ≈ 1013 s-1cm-

3 is the fission rate.  Correspondingly, an additional term Kv(x - xL(N)) is introduced in Eq. (5), where Kv ∝ τ0
-1, 

and xL(N) corresponds to the capillarity relation expressed in terms of the values x and N. In the considered case 
of small overpressurised bubbles with R ≤ 10 Å this relation is completely determined by the Van-der-Waals 
constant b ≈ 8.5×10-23 cm3 and can be reduced to the form xL(N) ≈ (b/Ω)N ≈ 2N. A proportionality factor in the 
relation Kv ∝ τ0

-1  may significantly differ from 1 reflecting the probability of incomplete relaxation of a bubble 
during short-term (τ*∼ 10-11 s) annealing in the molten zone of a track. Finally, one gets instead of Eq. (5): 

 dx/dt = Du (3Ω/4π)-2/3 x1/3(1 - βi /βv){1 - (cv
eq/cv)(1 - βi /βv)-1exp[(P - Ph - 2γ/R)Ω/kT]} - Kv(x - xL(N)). (9) 

Analysis of Eq. (9) shows that the additional term in the r.h.s. recreates the critical point at the intersection  of 
the two nodal lines dx/dt = 0 and dN/dt = 0 and, thus, leads to the stabilisation of the bubble radius in the steady 
stage of irradiation also in the case of low temperatures (see Fig.4). 

II.3.b. Large bubble evolution 

It should be emphasised, however, that the above proposed mechanism of a small bubble annealing becomes 
invalid for bubbles with the diameter exceeding the width of the fission particle tracks (∼100 Å). Under steady 
irradiation conditions this limitation is insignificant, since radii of the bubbles are stabilised and do not exceed ≈ 
10 Å. Under transient conditions the situation can radically change. For example, it was observed in the tests [21] 
that during a power transient the fuel temperature rises rapidly, leading to the growth of large (10 to 500 nm 
diameter) fission gas bubbles. Such large bubbles cannot be annealed in the molten zone of tracks and probably 
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conserve their dimension  x or reduce it but essentially less effectively (for example, by the vacancy radiation 
resolution mechanism similar to the above discussed gas atom resolution from bubbles). In this case the system 
behaviour is again described by the phase portrait similar to Fig.3, i.e. large bubbles (with R >> 50 Å) formed 
during the transient period grow up unrestrictedly.  

Since in this case (in the absence of restrictions implied by the capillarity relation, Eq. (1)) the gas atom 
diffusion is not anymore the rate determining step of  the bubble growth kinetics, on the one hand, and  owing to 
a relatively small value of the gas atom flux to the growing bubble (∝ Dgcg) in comparison with the effective flux 
of point defects (∝ Du (1 - βi/βv)), on the other hand, bubbles become essentially depressurised and grow up very 
rapidly (along the dashed line in Fig.3) in comparison with the usually proposed evolution (along the nodal line 
dx/dt = 0). In particular, this may lead to the significantly larger and quicker swelling of the fuel than usually 
expected. 

III. Irradiation effects 

Essential factors determining the system behaviour and entering in Eq. (3) are the non-equilibrium point 
defect concentrations cv (vacancies) and  ci (interstitials). For their calculation one can use the rate theory 
continuum model of Brailsford and Bullough [22]: 

 dcv /dt = K + Ke - Dvcvkv
2 - αDicicv , 

 dci /dt = K - Diciki
2 - αDicicv , (10) 

where K is the atomic displacement rate (usually proposed ≈ 10-5 s-1 for the PWR reactor normal operation 
conditions), Ke is the rate of thermal vacancy production,  kv(i)

2  is the sink strength for vacancies (interstitials), α  
is the recombination constant (≈ 4πrc/Ω, where rc ≈ 1-5 Å). 

If voids and dislocations are the only fixed sinks: 

 kv
2= 4πρbR + Zvρd ,  

 ki
2= 4πρbR + Ziρd , (10’) 

where  ρb  and  ρd  are the void number and dislocation density, respectively; the dislocation sink strength 
constants  Zv   and  Zi  for vacancies and interstitials are the order of unity, but  Zi  is a few percent larger due to 
the greater elastic interaction between dislocations and interstitials, than with vacancies. 

For calculation of the bulk concentrations  cv  and  ci , the grain boundary sink strength  kg.b.
2 can be neglected 

in comparison with the bulk sinks  kv,i
2 , since 

 kg.b.
2/ kv,i 

2 ≈ 3/(Rg kv,i ) << 1, 

where  Rg  is the grain radius. 

In the steady state (dcv /dt = dci /dt = 0) the general solution of Eqs. (10) is: 

 ci = (Dvkv
2/2α)[- (1 + µ) + ((1 + µ)2 + η)1/2], 

 cv = (Diki
2/2α)[- (1 - µ) + ((1 + µ)2 + η)1/2], (11) 

where η = 4αK/(Dvki
2kv

2),  µ = Keη/(4K). 

III.1. Low temperatures,  T ≤ 1500°C 

As it will be demonstrated below, at T ≤ 1500°C  Ke << K ; on the other hand, η occurs to be rather large (>> 
1) during a very long initial stage of the steady state period of irradiation. Indeed, at T ≈ 1000°C  Dv ≈ 10-11 cm2/s 
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(see below Eq. (14) and/or compare with data presented in [23]), and the relationship η >> 1 is valid until the 
parameters  ki

2 , kv
2  attain the value ≈ 1011 - 1012 cm-2, i.e. practically up to the maximal observed number density 

of the bubbles (with R ≤ 10 Å), ρb ≈ 1017 - 1018 cm-3. At higher temperatures (up to 1500°C) this relationship is 
valid in a slightly reduced range of the parameters  kv,i

2  variation (up to ≈ 1010 - 1011 cm-2) owing to some 
increase of Dv. At lower temperatures (below 1000°C) the uranium self-diffusion coefficient Du becomes 
completely athermal and independent on temperature, Du ≈ 10-16 cm2/s (at the fission rate F ≈ 1013 cm-3s-1 [23, 
24]). As shown below (Eq. (14)), Dv becomes also temperature independent and, thus, the applicability range of 
the relationship η >> 1 does not reduce. This is a rather important conclusion, since in this case the general 
solution, Eq. (11) can be radically simplified: 

 cv ≈ (KΩki
4/4πrc kv

2ki
2Dv)1/2 ≈ (KΩ/4πrcDv)1/2,  

 Dici ≈ Dvcv(kv
2/ki

2), (12) 

i.e. cv , ci  become practically independent on the amount of voids and dislocations in the crystal, since the mutual 
recombination of the point defects dominates in this stage. Owing to  Du ≈ Dvcv ≈ Dici,  finally one gets: 

 cv ≈ KΩ/4πrcDu , (13) 

 Dv ≈ 4πrcDu
2
 /KΩ. (14) 

Correspondingly, at T ≤ 1000°C  (Du ≈ 10-16 cm2/s) one gets cv ≈ 10-5, Dv ≈ 10-11 cm2/s. At higher temperatures 
(up to 1500°C) Du slowly increases up to its thermal value at 1500°C,  Du ≈ 10-15 cm2/s. Therefore, the calculated 
value of cv reduces to ≈ 10-6, i.e. cv attains its equilibrium value at 1500°C,  cv

eq
 ≈ exp(-2.2 eV/kT) ≈ 6×10-7 [23]. 

III.1.a. Nucleation factor 

It is important to notice that Eq. (13) allows the calculation of the so called nucleation factor FN , introduced 
in many models as a default value (usually varying in a wide range 10-4 - 10-7) to determine the probability that 
two gas atoms that have come together actually stick and form a bubble [1-3]. Indeed, it is easy to understand that 
for the stability of such a bubble at least one vacancy must be located in the position of the two atoms collision; 
otherwise, the formed bubble will immediately disintegrate. [Formally in terms of Eq. (8) it is directly seen that 
the bubble with x = 0 (no vacancies) and N = 2 corresponds to the non-physical state with the negative pressure P 
]. On the other hand, the probability that a vacancy is located in a certain position is exactly equal to the vacancy 
bulk concentration cv , which can be deduced from Eq. (13): 

 FN  = cv ≈ KΩ/4πrcDu . (13’) 

Therefore, at T ≤ 1000°C 

 FN  ≈ 10-5×(F/F0),  (15) 

where F is the fission rate, F0 =1013 cm-3s-1,  and at higher temperatures (up to 1500°C) FN  smoothly reduces by 
one order of magnitude:  

 FN  ≈ 10-6×(F/F0). (15’) 

III.1.b.  Sink strengths 

In order to calculate the parameter (1 - βi /βv) at T < 1500°C which at these temperatures is equal to 
1 - (kv

2/ki
2) (see Eq. (12)) and, thus, becomes a small value (<< 1), one should take into account that in this case 

an additional problem of calculation of the dislocation density ρd (determining the dislocation sink strength Zi,vρd 

) arises. In the initial stage of irradiation, when the bubble number density ρb  is low whilst the dislocation density 
is finite and determined by the original state of the crystal (usually estimated as ρd ≈ 108 cm-2), 4πρbR << Zi,vρd , 
therefore, one gets from Eq. (10’)  ki

2≈ Ziρd , kv
2≈ Zvρd , and 1 - βi /βv ≈1 - Zv /Zi ≈ 10-2.  
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Along with the irradiation dose increase, the bubble number density ρb and dislocation density  ρd  
simultaneously increase. While the bubble sink strength 4πρbR does not exceed the dislocation sink strength Zi,vρd 

, the value 1 - βi/βv  remains the same. From the analysis of the equation for the radius RL of the growing 
interstitial dislocation loops (with the Burgers vector b) [25]: 

 dRL/dt ≈ b-1(ZiDici  - ZvDvcv ) ≈ b-1ZvDvcv [(Zi /Zv)( kv
2/ki

2) - 1], 

it is straightforward to see that until 4πρbR << Zi,vρd  is valid (i.e. ki
2≈ Ziρd , kv

2≈ Zvρd ), the dislocation loop 
growth is strongly suppressed (with respect to the bubble growth): 

 dRL/dt ∝ [(Zi /Zv)(Zv /Zi) - 1] → 0. 

In the opposite case of a large number density of bubbles,  4πρbR >> Zi,vρd , and ki
2≈ kv

2≈ 4πρbR , the bubble 
growth turns to be suppressed (with respect to the loop growth), since from the equation for the growing bubble 
radius: 

 dR/dt ≈ R-1(Dvcv - Dici), 

in this case one can deduce: 

 dR/dt ≈ R-1Dvcv (1 - kv
2/ki

2) → 0. 

Therefore, it is logically to assume that after some time  the relationship 4πρbR ≈ Zi,vρd  becomes valid, and 
the further growth of the bubbles and dislocation loops occurs self-consistently, in accordance with this 
relationship. In this case 1 - βi /βv  remains  ≈ 10-2.  Indeed, this conclusion can be selectively confirmed by some 
data found in the literature. For instance, in the test [21] both densities ρb and ρd  were measured after some 
period of the steady irradiation: ρb ≈ 1016 cm-3, ρd ≈ 1010 cm-2, and the mean bubble radius R ≈ 4 nm, thus, the 
approximate equation  4πρbR ≈ Zi,vρd  was really valid.  

After completion of the «recombination stage», η ≥ 1 and dislocations and bubbles become the main sinks 
determining the steady state concentration of the point defects, i.e. Eq. (12) becomes invalid. As already 
mentioned, the transition to the new regime at T ≤  1500°C occurs at a late stage of the steady irradiation, when 
the bubble number density attains ρb ≈ 1017 - 1018 cm-3. In the new regime η >> 1 and the general solution 
Eq. (11) can be reduced to the form: 

 cv ≈ K/kv
2Dv ,            or           K ≈ kv

2Dvcv ≈ kv
2Du . (16) 

As already mentioned, at T≤ 1000°C  Du depends only on the fission rate F and does not depend on 
temperature: Du ≈ 10-16 - 10-17 cm2/s. At higher temperatures (up to 1500°C) Du smoothly increases up to  
10-15 cm2/s. Therefore, kv

2 attains the steady value also in the new regime. This value determined by Eq. (16) 
weakly depends on temperature, being kv

2 ≈ 1011 - 1012 cm-2  at T ≤ 1000°C and smoothly reducing to kv
2≈ 

1010 - 1011 cm-2  at T ≤ 1500°C. Moreover, in all these cases kv
2 does not exceed the value attained in the 

recombination stage. 

This means that the value of kv
2 attained at T ≤ 1500°C in the recombination stage is practically final and does 

not increase anymore during the subsequent stage. Since  kv,i
2= 4πρbR + Zv,iρd , and, as shown above, 4πρbR ≈ 

Zi,vρd , then the attained stabilised value of the bubble number density is ρb ≈ 1017 - 1018 cm-3, in a fair agreement 
with experimental data for the bubble number density observed in the steady stage of irradiation [15-18]. 

III.2. High temperatures,  T ≥ 1500°C 

At T ≥ 1500°C the thermal effects dominate over radiation ones, Ke ≥ K, and the general solution, Eq. (11), 
self-consistently transforms into  

 cv ≈ cv
eq

 ≈ Ke /kv
2Dv ,              Dici ≈ Dvcv(kv

2/ ki
2)(K/Ke) << Dvcv , (17) 

therefore,   1 - βi /βv  = 1 - (Dici /Dvcv) ≈ 1. 
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In contrast with the low temperature case, Eq. (17) does not imply any limitations to the value of  kv
2. 

Therefore, additional (thermal) mechanisms should be considered in order to explain the observed stabilisation of 
this parameter at high temperatures. 

IV. Thermal resolution of gas atoms 

As already mentioned, an additional term representing the thermal resolution of gas atoms from bubbles is 
usually not considered in the equation describing the behaviour of the gas subsystem (i.e. Eq. (7)). It will be 
demonstrated here that namely such a process determines the mechanism of the bubble nucleation and becomes 
responsible for the observed stabilisation of the bubble number density at T ≥ 1500°C.  

A comprehensive analysis of this process should be carried out with the account of the non-ideal state of the 
overpressurised gas in small bubbles (R ≈ 10 Å), since Van-der-Waals corrections are especially influential in 
terms of this thermal process. However, for a qualitative analysis of the system behaviour, the problem may be 
simplified in the ideal gas approximation. Numerical calculations for the non-ideal gas (which will be published 
elsewhere) generally confirm the main qualitative conclusions derived from the analysis of the simplified 
problem. 

In the ideal gas approximation the account of the thermal resolution of gas atoms from a bubble transforms 
Eq. (7) into the following one: 

 dN/dt = Dgcg (3Ω/4π)-2/3 x1/3[1 - NKg /(Dgcg x1/3) - NkT/xΩPe], (18) 

where  Pe  is the gas pressure in the bubble in equilibrium with the solid solution of the gas atoms in the fuel 
matrix.  Assuming Henry’s law behaviour up to the terminal solubility  cs, one gets  Pe = (Ps /cs)cg . However, the 
ratio (Ps /cs) is unknown, thus, it can be only roughly evaluated from the available indirect data. Hence, it is 
known from the literature [26] that the solubility of He in UO2 measured in the pressure range 5-10 MPa at 
1200°C, yields (Ps /cs) ≈ 1.5×1012 Pa. This value will be used hereafter for quantitative estimations, bearing in 
mind that for Xe and Kr it can be somewhat different and also temperature dependent (Arrhenius law). 

IV.1. Qualitative analysis of the system behaviour 

The first conclusion which can be drawn from the analysis of Eq. (18) is that at high temperatures (T ≥ 
1500°C) the thermal resolution term (the third one in the r.h.s.) dominates over the radiation induced resolution 
term (the second one in the r.h.s.). Indeed, the ratio q of these terms is equal to DgkT/[KgΩ5/3(Ps /cs)x2/3] and 
increases with the increase of the gas atoms diffusion coefficient Dg . At T ≈ 1500°C,  Dg ≈ 10-13 cm2/s [24, 27],  
Kg ≈ 10-4 - 10-6 s-1  [28], and assuming (Ps /cs) ≈ 1.5×1012 Pa one can get for a bubble with the characteristic radius 
∼ 10 Å (i.e. xb ∼ 103) an estimation q ≥ 1.  

With further temperature increase q  becomes >> 1 and the thermal resolution dominates over the radiation 
induced one. This corresponds to the linear dependence N ∝ x of the nodal line dN/dt  = 0 at x ≤ xb in the phase 
portrait of the system. In this case the critical nucleus size  xcr  corresponding to the intersection of the nodal lines 
dN/dt = 0 and dx/dt = 0 (determined by the equation N = 2γ(xΩ)2/3/kT ≈ xPeΩ/kT ), can be evaluated as xcr

1/3 ≈ 
2γ /[cg(Ps /cs)Ω1/3], thus, it increases with the decrease of cg and exceeds the interatomic distance at relatively high 
values of  cg  ≤ 10-2.  

With further decrease of cg the critical point approaches the other intersection point of the nodal lines (which 
determines the steady size of bubbles, see section II.3), Fig.5, and finally coincides with this point, Fig.6. This 
situation corresponds to the final state of the bubble system evolution, stabilised with respect to both the bubble 
size and density number under the steady irradiation conditions (see below). The condition of the two critical 
points coincidence can be evaluated from the relationship q(xcr) ∼ 1, that is cg* ≈ Kgγ 2Ω/DgkT(Ps /cs)]1/2, 
therefore, at T ≈ 1500°C  cg* ≈ 10-3 - 10-4, and the corresponding  critical bubble size x* ≈ 102  - 103.  

With temperature increase in the range from 1500 to 1800°C the diffusion coefficient Dg increases 
approximately by one order of magnitude, leading to the critical bubble radius r*∝ x*1/3 increase by a factor of 
3-5. In reality the observed increase of the bubble radius is smaller (≈ 1.5 times) [18], this apparently can be 

  10 



explained by the unaccounted Arrhenius dependence of the factor (Ps /cs) on temperature in Henry’s law for the 
solid solute of the gas atoms. 

It is easy to understand that the bubble system state characterised by the coinciding critical points in Fig.6 
really corresponds to the final quasi-stationary state. Indeed, since the range of the bubble size growth (between 
points III and I in Fig.5) reduces to zero (Fig.6), the bubble radius is completely stabilised. On the other hand, 
since this radius simultaneously corresponds to the critical nucleus and significantly exceeds the interatomic 
distance, the probability of new bubbles generation at this stage is exponentially small. Moreover, if one assumes 
that after some long period of time new bubbles nevertheless appear, the subsequent reduction of the gas atom 
concentration cg  leads to the separation of the nodal lines (dashed line in Fig.6) and disappearance of the critical 
point (i.e. the critical nucleus size). In its turn, this immediately leads to the initiation of the bubbles resolution, cg 
increase, and the recreation of the initial state of the system. [It is worthwhile to note that such a state is rather 
similar to the state described by the Lifshitz - Slyozov point in the theory of the late stage precipitation and 
coagulation in solid solutes [29]]. Therefore, the given quasi-stationary state is stable and corresponds to a late 
stage of the steady irradiation when all the generated fission gas atoms diffuse to the grain boundaries without 
trapping by the stabilised (with respect to the bubble size and number) system of the intergranular bubbles. 

IV.2. Nucleation mechanism at high temperatures 

In the preceding stage of the irradiation the mechanism of the bubble formation also differs from that at lower 
temperatures (T ≤ 1500°C). Indeed, since at high temperatures the critical nucleus size exceeds the interatomic 
distance in a rather wide range of values cg ≤ 10-2, small bubbles (N = 2) are «subcritical» (i.e. unstable) and 
disintegrate, practically during all the period of irradiation. The formation of larger (critical and «supercritical») 
bubbles occurs with some activation energy according to Volmer - Zeldovich mechanism [29]. Correspondingly, 
the bubble nucleation process at T ≥ 1500°C becomes heterogeneous and, thus, can be associated with the 
increased efficiency of fission particle tracks as probable nucleation sites (this is in accordance with electron 
microscope observations of the increasing amount of bubbles on the tracks at temperatures above 1500°C [18]). 
Naturally, under such conditions the description of the bubble formation by the constant nucleation factor FN  
becomes invalid, since the correct description has to be based on the calculation of the activation barrier Ea for 
the fluctuation formation of the critical nucleus, FN ∝ exp(-Ea /kT). 

V.  Intergranular porosity 

As in the case of the intragranular porosity (see section II.1), the evolution of the intergranular porosity is 
usually considered in the quasi-stationary approximation of mechanically equilibrium bubbles (e.g. [1-3, 9, 30, 
31] . Such an approximation is based on the theoretical work [32], in which kinetics of the intergranular bubble 
growth determined by the diffusional flux of the grain boundary vacancies, was considered. According to [32], 
the grain boundary vacancy flux is evaluated as: 

 Jg.b.≈ (2πw/L)Dv
g.b.(cv

eq - cv(ρ)) = (2πw/L)Dv
g.b.cv

eq{1 - exp[(P - Ph - 2γ/ρ)Ω/kT]} ≈ 

 ≈ - (2πw/L)Du
g.b.(P - Ph - 2γ/ρ)Ω/kT, (19) 

where Dv
g.b. is the grain boundary vacancy diffusion coefficient, Du

g.b. = Dv
g.b.cv

eq is the grain boundary self-
diffusion coefficient, w  is the boundary thickness, ρ  is the radius of curvature of the pore, L ∼ 1 is a function of 
the fraction of the grain boundary area occupied by pores; thus, the quasi-stationary state (Jg.b. = 0) corresponds to 
the mechanically stable bubble: 

 P - Ph  - 2γ/ρ = 0. (20) 

However, applying these results to the UO2 fuel it was generally ignored that the original model [32] did not 
consider an irradiated crystal. Under non-equilibrium conditions of the irradiated crystal the vacancy 
concentration in the bulk of the grain may be so high that the vacancy flux  Jg  from the interior of the grain to the 
boundary exceeds the grain boundary vacancy flux Jg.b.. 

  11 



In order to determine the applicability range of the standard approach, one should compare the two fluxes. In 
accordance with Eq. (4): 

 Jg = 4πρDvcv{1- (βi /βv) - (cv
eq/cv)exp[(P - Ph  - 2γ/ρ)Ω/kT]}  

 ≈  4πρDvcv
eq [(1 - βi /βv)(cv /cv

eq) - 1 - (P - Ph  - 2γ/ρ)Ω/kT], (21) 

thus, the ratio of the two fluxes is: 

 Jg.b./Jg ≈ (Du
g.b./Du)(w/ρ)[(P - Ph  - 2γ/ρ)Ω/kT ] /[1 - (1- βi/βv)(cv /cv

eq) + (P - Ph  - 2γ/ρ)Ω/kT]. (22) 

As demonstrated above, at T ≥ 1500°C the radiation effects become negligible (in comparison with the thermal 
ones), and  (1 - βi /βv)(cv /cv

eq) ≈ 1. Therefore, since the value (Du
g.b./Du) ≈ 105  is extremely large [33],  Jg.b./Jg 

>> 1 and  the approach of [32] can be reliably extended also to the case of the irradiated fuel at T ≥ 1500°C. 

However, at lower temperatures, T < 1500°C it becomes (1 - βi /βv)(cv /cv
eq) > 1, thus, Jg ≠ 0 when 

P - Ph - 2γ/ρ  = 0, and the above mentioned quasi-stationary condition  Jg.b. = 0 leads to  Jg.b./Jg → 0. This means 
that in reality the bubble state determined by the capillarity relation Eq. (20) is not stationary but corresponds to 
the bubble growing due to the diffusional flux of the point defects from the bulk of the grain. Therefore, for 
instance, at 1200°C when  (1 - βi /βv)(cv /cv

eq) ≥ 10, for large bubbles with ρ  ≥ 103 Å  the condition  Jg.b./Jg > 1  is 
valid only at  P - Ph ≥ 10×(2γ/ρ), whereas for ρ  ≥ 1 µm — only at P - Ph ≥ 102×(2γ/ρ). 

It is quite clear that in such a situation both processes of the bulk and grain boundary point defect diffusion 
should be considered self-consistently in order to describe the evolution of large intergranular bubbles (with ρ >> 
100 Å). Such a consideration  shows that already at 1300-1400°C  the bulk diffusion starts to dominate, this 
allows the description of the large intergranular bubble evolution by a line of the type represented by the dashed 
line in Fig.3. Indeed, since the internal pressure in such bubbles is rather small (in comparison with the capillary 
one, see section II.3.b), then, as seen from Eq. (22),  the grain boundary vacancy flux turns to be really negligible 
in comparison with the bulk one. Hence, for instance, at 1300°C,   [(2γ/ρ) - P]Ω/kT ≈ (2γ/ρ)Ω/kT ≈ 10-2  for ρ ≈ 
1 µm, therefore, Jg.b./Jg ≈ 10-1. With temperature decrease the maximum size of the bubbles growing by the grain 
boundary diffusional mechanism also quickly decreases. Thus, at temperature below 1100°C the growth of all the 
intergranular bubbles with ρ > 100 Å  can be described neglecting the grain boundary vacancy diffusion flux, i.e. 
the standard approach based on the equilibrium crystal model [32] is not valid in this temperature range. 

Since in this case (corresponding to the dashed line in Fig.3) the kinetics of the bubble size growth are 
determined by the point defect flux rather than the gas atom flux (as it was in the standard approach, see section 
II.3.b), the bubble growth rate becomes significantly higher. For the same reason, the internal pressure in such 
bubbles is rather low (in comparison with the capillary one). Both these factors can lead to the significant 
underestimation of the value and rate of the fuel swelling by the standard models, and can radically change the 
behaviour of the system even qualitatively. For instance, during formation of the open porosity on the grain faces, 
the channels formed by the bubble chains will practically conserve their form after the gas release from these 
bubbles (see dashed-dotted line in Fig.3) and will not shrink (as in the models for the “capillary” bubbles, e.g. 
[9]). This in its turn will additionally increase the gas release rate from the fuel. 

VI. Conclusions 

In the present paper the standard approaches for modelling of the inter- and intragranular bubbles evolution in 
the UO2 fuel are critically analysed on the basis of the available experimental data. It is demonstrated that the 
main source of errors in the simplified treatment of the problem by the standard models can be associated with 
the underestimation of: 

• the radiation effects at temperatures below ≈ 1500°C (where these effects dominate over the thermal ones); 

• the thermal effects at temperatures above  ≈ 1500°C (where these effects dominate over the radiation ones). 

At low temperatures (≤ 1500°C) the generally accepted quasi-stationary approximation based on the 
capillarity relation for growing bubbles fails, since at these temperatures point defects generated in the fuel under 
irradiation conditions significantly change the behaviour of growing bubbles, especially in the case of large 
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bubbles formed on the grain faces or during transients in the bulk of the grains. In particular, this may lead to a 
significant underestimation of the value and rate of the fuel swelling. On the other hand, the presented analysis of 
the defect structure evolution allows quantitative description of the bubble nucleation mechanism, as well as 
evaluation of the bubble number density and stable size attained under steady irradiation conditions.    

At high temperatures (≥ 1500°C) the thermal resolution of gas atoms from bubbles generally unaccounted in 
the standard models, becomes the dominant process leading to the significant increase of the critical nucleus of 
the bubbles and, as a result, change of the mechanism and kinetics of the bubble generation. On the other hand, 
self-consistent consideration of the thermal and radiation induced resolution processes allows natural explanation 
and quantitative description of the bubble size and number stabilisation observed also at high temperatures under 
steady irradiation conditions.    
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Fig.1: Schematic diagram of nodal lines in the
simplest case of «capillary» bubble evolution.
Velocity vectors and the critical point I (stable
node) are indicated .
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Fig.2: Nodal lines in the case of non-equilibrium
crystal oversaturated with point defects. Two
critical points I (stable node) and II (saddle
point) are indicated.
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Fig.3: Nodal lines and trajectory of growing
bubbles (dashed line) in the absence of critical
points (corresponding to the low temperature
case in Fig.2).
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Fig.4: Nodal lines with account of the small
bubble relaxation mechanism (leading to  the
transformation of Fig.3).
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Fig.5: Nodal lines in the high temperature case
(T≥1500°C) with account of the thermal
resolution of gas atoms from bubbles. Saddle
point III corresponds to the critical nucleus.
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Fig.6: Nodal lines in the case of the two critical
points I and III coincidence, corresponding to
stabilisation of bubble size and number under
steady state irradiation conditions at T≥1500°C.
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