Transitions between Volume-Localized Electron Quantum Levels of Fullerene C_{60} Ion

RafaelV.Arutyunyan and Alexander D. Vasiliev
Nuclear Safety Institute, 52BolshayaTulskaya, Moscow 115191, Russia.
e-mail: vasil@ibrae.ac.ru

1 Introduction

New allotropic forms of carbon such as fullerenes, fullerites, onion-like fullerenes and afterward carbon nanotubes, graphene, doped and endohedralfullerenes, have been discovered respectively recently [1]. Currently, those nanomaterials are considered as perspective materials in different areas of technology. The review of fullerenes' physical properties and behaviour including fullerene ions under collisions with fullerenes and other particles is presented in the paper [2].

The ionizationcross-sectionsduring electron impact [3,4] or photoionization cross-sections [5] of neutral and positively or negatively charged fullerenesareobtainedintheliterature. It should be noted that due to big size of fullerene compared to ordinary atoms and molecules and due to large number of carbon atoms in fullerene, the direct quantum-mechanical calculations of these objects are extremely complicated and have alow accuracy and poor prediction ability. This is why some simplified model assumptions are necessary for the analysis of physical properties of fullerenes and fullerene ions.

A number of investigators [6,7] successfully apply the so called "jellium" modelto qualitatively describe the physical parameters from experimental observations. The authors calculated the energy levels spectrum for C_{20} as well as for C_{60} molecules. For example, the lowest occupied electron energy level corresponds to about -44 eV while the highest occupied level equals approximately to -4 eV in C_{20} neutral fullerene. In C_{60} neutral fullerene these levels are almost the same: -43 eV and -3.5 eV respectively. In the paper [7] the potential of the well and the wave functions for fullerene C_{60} are calculated.A spherical electron gas model is applied as a simple model of C_{60} molecule to the optical scattering of electromagnetic wave on fullerene molecules [8].

The volume-localized electron levels (VLELs) existent due to Coulomb potential well inside positive C_{60}^{+Z} ion have been reported for the first time in [9]. To our knowledge, these electron levels located primarily inside the fullerene ion spheroid have not clearly mentioned in the literature yet.

The system fullerene cation + electron and maybe neutral fullerene + electron can form the quantum coupled system similar to inverted nanoion ($C_{60}^{+Z}+e^{-}$) or nanoatom ($C_{60}^{+}+e^{-}$). The electron is localized at discrete energy levels inside the charged sphere of fullerene cluster composed of carbon ions. This is due to unique geometrical form of fullerene cluster as a spheroid resulting in Coulomb potential well formation inside the fullerene. It could be said,
that due to this topology, the quantum VLELs are concentrated on the "wrong" side of fullerene sphere.

At the same time, the ordinary surface-localized electron levels (SLELs) are typical for charged and neutral fullerene. Thus, concerning the impact of the electron beam with fullerene ions gas, the capture of free electrons is possible both to VLELs and SLELs energy levels. Also, the spontaneous transitions from VLELs to other VLELs and to SLELs could take place with simultaneous light emission.

Inthepaper [10] theauthorsconductthecalculationsoffullerenesrecharge cross-sections within the bounds of standard recharge theory with tidy two-well symmetric potential. Thosecalculationsareinagoodagreementwithexperimentaldata.

Thereisdirectexperimentalevidencethatfullereneiondegree (the number of positive elementary charges on a fullerene) mayreach the quantity of about +10 .Forexample, theexperimentsareconsideredin [11], wherehigh-chargedfullereneionswereformed during ionization by electron beam. The ions were detected with positive charge corresponding up to 6 elementary charges per particle.Inthepaper [12] theexperiments are reported, inwhichthe stable 12-foldfullerene ions were observed (12 elementary charges per particle) after irradiation of fullerene jet by strong infrared laser impulse.

The fullerene ions are stable or meta-stable. For example, the authors of the paper [13] estimate numerically the characteristic C_{60}^{+Z} ion lifetime to be of the order of several seconds for $\mathrm{Z}<+11$. However, according to this investigation, the dramatic lowering of fullerene ions lifetime by 10 orders of magnitude takes place when increasing Z from +11 to +13 .Theionlifetimelongerabout $0.5 \mu \mathrm{~s}$ is reported in the experimental work [11].

Atthesametime, theresultsofquantum-mechanicalcalculationsbydensity functional theory (DFT) $[14,15,16]$ show that the metastablefullereneionscanbeobtainedwithionizationdegreeuptoZ=+10.

The study of optical and nonlinear optical properties of fullerenes and fullerene ions with different ionization degree Zincluding high Z is very important because those properties have not been fully analyzed up to now. Currently, this topic attracts many investigators throughout the world, see, for example, [17]. The fullerenes, onion-like fullerenes and carbonnanotubes (CNT) are very perspective materials, particularly, due to their unique geometry.The discovery of new unexpected phenomena of those nanomaterials is still anticipated in the future investigations.

In this paper the simplified spherical model is used for qualitative and quantitative description of volume-localized electron levels existent due to Coulomb potential well inside positive C_{60}^{+Z} ion.

The VLELs wave eigenfunctionsand the energy levels are investigated in the next Section. Then, in the Section devoted to the results of investigation, the electron capture cross-sections during recombination are calculated on the basis of standard quantum-mechanical methods.

Also, the main results of calculations of dipole moments for transitions from fullerene ions' VLELs to other VLELs and to SLELs are presented. In the last subsection, the principal possibility of coherent radiation generation on fullerene ions VLELs is discussed.

2 Materials and Methods

We use for the analysis the simplified spherical model of fullerene. According to this model, the total positive charge of carbon ions of fullerene cluster and total negative charge of bounded and delocalized electrons are uniformly distributed on spherical surface of infinitesimal thickness. So, the quantum-mechanical problem allows the axial-symmetrical formulation. This assumption considerably simplifies the consideration of volume-localized electron levels in fullerene ion.

Volume-localized Electron Levels of Fullerene Ion

Let us find the electron wave functions corresponding to different energy levels in the potential produced by charged fullerene. We consider the ion C_{60}^{+Z} in the analysis.

We suggest that except ordinary electron level states bounded with carbon ions (localized electron quantum levels) and states unified with a whole cluster (delocalized electron quantum levels) characteristic of neutral fullerene there exist another delocalized electron levels in fullerene ion due to the effective Coulomb field of charged fullerene.

Indeed, within the bounds of this model the dependency of electron potential energy in a Coulomb potential of charged fullerene $U(r)$ is presented in Figure 1 as an example. Here r is the distance to the centre of fullerene, Z - the charge of fullerene, e - the charge of electron, ε_{0} - the dielectric permeability of vacuum, r_{f} - the radius of fullerene.

The depth of potential well U_{0} is (see Figure 1):

$$
\begin{equation*}
U_{0}=\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{f}} . \tag{1}
\end{equation*}
$$

By insertingthe following values $Z=+10, e \approx 1.60 \cdot 10^{-19} \mathrm{C}, \varepsilon_{0} \approx 8.85 \cdot 10^{-12} \mathrm{C} /(\mathrm{V} \cdot \mathrm{m}), r_{f} \approx 3.51 \cdot 10^{-}$ ${ }^{10}$ mintothisformulae, \quad weget $U_{0} \quad \approx \quad 6.57 \cdot 10^{-18} \mathrm{~J} \approx \quad 41.1 \mathrm{eV}$. Aslongasthedepthofthewellisdeepenough in comparison to the value

$$
\frac{\hbar^{2}}{m_{e}\left(2 r_{f}\right)^{2}} \approx 5 \cdot 10^{-20} \mathrm{~J} \approx 0.31 \mathrm{eV}
$$

where $\hbar \approx 1.05 \cdot 10^{-34} \quad \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}-$ the \quad reducedPlanckconstant, $\quad m_{e} \approx 0.91 \cdot 10^{-30} \mathrm{~kg} \quad$ themassoftheelectron, $2 r_{f}-$ thecharacteristicsizeofthewell, then in this potential well a number of electron states exists which is much more than unity [18]. Note, that this conclusion is valid for every fullerene ion's charge fromZ=+1 to $Z=+10$.

Figure 1: Simplified radial dependence of electron potential energy in Coulomb field of charged fullerene C_{60}^{+z}.

Despite the "jellium" or simplified sphericalmodel within which VLELs can be obtained is rather rough approximation, the existence of VLELs is not argued. In reality the resultant Coulomb field in fullerene ion is not spherically symmetric, it is modulated on angles $\theta и \varphi$ (see Figure 2)correspondent to carbon ions locations in fullerene shell. But taking into account of this circumstance will just result in correction of wave states eigenvalues and spatial dependencies, while will not call in question the conclusion on the existence of VLELs itself.

For the axial symmetry case the solution for wave functions is presented as a product of radial and spherical functions:

$$
\begin{equation*}
\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \varphi), \tag{2}
\end{equation*}
$$

wheren, landmarethe principal, azimuthaland magnetic quantum numbersrespectively. The numbernsatisfiesthe non-equality $n \geq l+1$. The energy of electron $E_{n l}$ corresponds to every wave function.

The equations for radial wave function within the bounds of simplified sphericalmodel of spherical fullerene in atomic system of units are written as

$$
\begin{array}{ll}
\frac{d^{2} R_{n l}}{d r^{2}}+\frac{2}{r} \frac{d R_{n l}}{d r}-\frac{l(l+1)}{r^{2}} R_{n l}+2\left(E_{n l}+\frac{Z}{r_{f}}\right) R_{n l}=0, & 0 \leq r<\frac{r_{f} m_{e} \alpha}{\hbar^{2}}=r_{\text {full }}, \\
\frac{d^{2} R_{n l}}{d r^{2}}+\frac{2}{r} \frac{d R_{n l}}{d r}-\frac{l(l+1)}{r^{2}} R_{n l}+2\left(E_{n l}+\frac{Z}{r}\right) R_{n l}=0, & r \geq \frac{r_{f} m_{e} \alpha}{\hbar^{2}}=r_{\text {full }} . \tag{4}
\end{array}
$$

where $\alpha=e^{2} /\left(4 \pi \varepsilon_{0}\right), Z$-the fullerene ion charge, $\quad r_{\text {full }} \approx 6.63$ - the fullerene radius in atomic system of units. We consider now the region inside the charged fullerene C_{60}^{+Z} that is $r<r_{\text {full }}$.

Figure 2: Fullerene ion C_{60}^{+Z} in a spherical system of coordinates.

The Equation 3can be rewrittenas

$$
\begin{equation*}
\frac{d}{d r}\left(r^{2} \frac{d R_{n l}}{d r}\right)=-\gamma_{n l} r^{2} R_{n l}+l(l+1) R_{n l}, \quad \gamma_{n}=2\left(E_{n l}+\frac{Z}{r_{f}}\right) \tag{5}
\end{equation*}
$$

Inbeginning, letusinvestigateelectrons-states with $l=0$ (the spherical symmetry s-states). The solutionsof (3) limited at $r=0$ will be

$$
\begin{equation*}
R_{n 0}=\frac{\sin \left(\sqrt{\gamma_{n}} r\right)}{r}=\frac{\sin \left(k_{n} r\right)}{r}, k_{n}=\sqrt{\gamma_{n}} . \tag{6}
\end{equation*}
$$

Apartfrom (6),another solutions tending to infinity atr=0 will also be applicable:

$$
\begin{equation*}
R_{n 0}=\frac{\cos \left(k_{n} r\right)}{r} \tag{7}
\end{equation*}
$$

However, thosesolutionsarephysicaltoo, because the integral of square of wave function module in the vicinity of singularity point $r=0$ is convergent, that isfinite. Thus, the wave eigenfunctions inside fullerene sphere for azimuthal quantum number $l=0$ are as following:

$$
\begin{equation*}
R_{n 0}=\frac{\sin \left(k_{n} r\right)}{r}+\eta_{n} \frac{\cos \left(k_{n} r\right)}{r} \tag{8}
\end{equation*}
$$

with correspondent energy levels $E_{n 0}=-Z^{2} /\left(2 \varsigma_{n}^{2}\right), \quad \varsigma_{n}=n=1,2,3 \ldots$;the parameter η_{n} is determined from boundary conditions.

The solutions of Equations 4 for the region outside the fullerene shell are presented in Appendix 1. Theconditionsofsewingtogetherthewavefunctions and their derivativesinside and outside afullerenesphereresult in thatforcharge $Z=+1$ and $\zeta_{n} \gg 1$ the parameter η_{n} is equal about -0.24 . The expression $E_{n}=-Z /\left(2 \varsigma_{n}^{2}\right)$, where ζ_{n} is the integer number, arises from the conditions of converging of the solution at $r \rightarrow \infty$ and is the obligatory property of Coulomb systems.

The parameter $\gamma_{n}=2\left(E_{n}+Z / r_{\text {full }}\right)$ from Equation 5 should be more than zero otherwise $k_{n}=\sqrt{\gamma_{n}}$ will be imaginary. In last case the solution would be

$$
\begin{equation*}
R_{n 0}=\frac{\operatorname{sh}\left(\sqrt{\left|\gamma_{n}\right|} r\right)}{r}+\eta_{n} \frac{\operatorname{ch}\left(\sqrt{\left|\gamma_{n}\right|} r\right)}{r} \tag{9}
\end{equation*}
$$

However, the appropriate energy levels in this case are lower than the bottom of Coulomb potential well (see Figure 1) and, consequently, the solutions (8) do not have a physical meaning.

ThecompletesetofsolutionsforEquations 3and 4for the casel> 0 and for the region outside the fullerene sphere are given in Appendix 1.

Results and Discussion

Let us now use the model of VLELs to some interesting quantum mechanical applications.

Electron recombination with electron capture to volume-localized levels of fullerene ion C_{60}^{+Z}

Consider the electron beam incident on the medium consisting of fullerene C_{60}^{+Z} ions.
The intensityof electron beam passing through the medium containingparticles is changing according to Bouger-Beer-Lambert law:

$$
\begin{equation*}
I_{n}(E, x)=I_{0}(E) \exp [-n Q(E) x], \tag{10}
\end{equation*}
$$

where I_{0} istheinitialintensityofelectronbeam, $1 /\left(\mathrm{m}^{2} \mathrm{~s}\right) ; n$ - theconcentrationofparticles, $1 / \mathrm{m}^{3} ; x$ - the distance, passed by the beam, $\mathrm{m} ; Q(E)$ - the total cross-section of electron scatteringon the particle; E - the energy of the electron.

Supposethatthemediumcontainsfullerenes, fullereneionsoronionfullerenes. The electrons scatter on nanoparticles by two ways:

- Elasticscattering (whenelectronenergy is not changing during collision but the electron can scatter at some angle from initial direction of propagation);
- Non-elastic scattering with energy loss of incident electron including several possible channels (fullerene transition to the state with higher electron energy, the scattering with excitation of fullerene's plazmon oscillations, one- or many-fold ionization of fullerene, the electron capturewith transition to exciting state or photon emiting (electron recombination).
We will stay in more detail on electron capture phenomenon. Consider the problem of moving electron capture by positive ion of C_{60}^{+Z} fullerene in the state of rest (Figure 3).

b)

Figure 3: The geometry of electron recombination phenomenon: a) particles positionbefore capture; b) particles positionafter capture.

Theelectronwithwavevector \bar{k} andmomentum \bar{p} directedalongz-axis and kinetic energy $E=p^{2} / 2 m_{e}=k^{2} \hbar^{2} / 2 m_{e}$ (Figure 3a) is falling upon the fullerene. Asaresultofinteractiontheelectroncanbecapturedbythefullerenethatistheelectroncantransfertoo neofunoccupiedelectronlevelsofneutral chargedfullerenewithinstantaneousemittingofphoton (Figure 3b).

Ifweknowthewavefunctions $\psi_{n}(\bar{r})$ correspondingtodifferentenergyquantum levelsoffullereneions, thenfreeelectroncaptureamplitudeduring transition from continuum
spectrum state with energy E togivenenergylevel E_{n} with wave function Ψ_{n} is written by the following manner:

$$
\begin{equation*}
T(\bar{k}, n)=\left\langle\psi_{n}(\bar{r}) U U(\bar{r}) \mid \exp (i \bar{k} \cdot \bar{r})\right\rangle, \tag{11}
\end{equation*}
$$

where $U(\bar{r})$ isthepotentialofion C_{60}^{+10}, presented inFigure $4, \bar{k}$ - the wave vector of incident electron. Thus, we use the classical Born approximation. Thepotentialofneutralfullerene [6] is shown inFigure 5.

Figure 4: Schematic presentationof self-consistent potential of fullerene ion C_{60}^{+10}.

Figure 5: The wave functions and the potential of the well for C_{60} shell reproduced from [6].

So, the amplitudeoftheelectroncapture on free electron levels of fullerene ion with wave function ψ_{n} will be the integral on volume:

$$
\begin{equation*}
T(\bar{k}, n)=\oint_{V} \exp (i k z) U(\bar{r}) \psi_{n}(\bar{r}) d V, \tag{12}
\end{equation*}
$$

where \bar{k} is the electron wavevector.
Forestimationofthisintegralit is convenient to expand the plane wave of incident electron on spherical waves the following way [18] (seeFigure 3a):

$$
\begin{align*}
& e^{i \bar{k} \cdot \bar{r}}=4 \pi \frac{1}{2 k} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} i^{l} R_{n l}(r) Y_{l m}^{*}\left(\frac{\bar{k}}{k}\right) Y_{l m}\left(\frac{\bar{r}}{r}\right), \tag{13}\\
& R_{n l}(r)=(-1)^{l} 2 \frac{r^{l}}{k^{l}}\left(\frac{d}{r d r}\right)^{l} \frac{\sin k r}{r} .
\end{align*}
$$

Buttheproductofradialfunctions $R_{n l}(r)$ andsphericalfunctions $Y_{l m}(\theta, \varphi)$ are exactly the wave eigenfunctionsinside a charged fullerene sphere. This sircumstance considerably simplifies the approximate calculation of integrals (12).

The capture probability is the square of matrix element. Asaresultthesquarerootfromprobabilityofelectroncapture to sphericall symmetrical level ($n=0$) is estimated as

$$
\begin{equation*}
\sqrt{P_{\text {capture }}}=\frac{4 \pi}{16 \pi^{2}} \cdot \frac{1}{2 k} \cdot \frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{f}} \cdot \frac{\hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}}{m_{e} Z^{2} e^{4}}=\frac{1}{4 \pi} \cdot \frac{1}{2 k} \cdot \frac{\hbar^{2} 4 \pi \varepsilon_{0}}{r_{f} m_{e} Z e^{2}} . \tag{14}
\end{equation*}
$$

Theterm $16 \pi^{2}$ hasarisenduenormalization of spherical functions (see Appendix 2). Inthisexpressionthewavevectorkis expressed in atomic unite, so it is necessary to make the substitution

$$
\begin{equation*}
k \rightarrow k \cdot \frac{\hbar^{2} 4 \pi \varepsilon_{0}}{m_{e} Z e^{2}} . \tag{15}
\end{equation*}
$$

Then we get the simple expression

$$
\begin{equation*}
\sqrt{P_{\text {cappure }}}=\frac{1}{16 \pi^{2}} \frac{2 \pi}{k r_{f}} \tag{16}
\end{equation*}
$$

From the above expression we concludethatthe capture cross-section (proportional to capture probability) isinverselyproportionalto squareofwavevectoror to electron kinetic energy.

The partial capture cross-section is

$$
\begin{equation*}
\sigma_{\text {capture }, n}=\frac{4 \pi^{2} \omega_{n}}{c}|T(\bar{k}, n)|^{2}, \tag{17}
\end{equation*}
$$

where ω is the angular frequency of emiting photon, c - the light speed.
For more thourough calculation instead of (16) we need to take the following integral

$$
\begin{equation*}
\sqrt{P_{\text {coppure }}}=\frac{1}{8 \pi k r_{f}^{2}} \int_{0}^{r_{f}} \sin k x \cdot R_{n l}(r) Y_{l m}(\theta, \varphi) \cdot d x, \tag{18}
\end{equation*}
$$

wherekisthe wave vector of incident electron and the wave vector of electron level is written as

$$
\begin{equation*}
k_{n}=\sqrt{2\left(E_{n}+\frac{Z}{r_{f}}\right)} \tag{19}
\end{equation*}
$$

The total capture cross-section is

$$
\sigma_{\text {capture,total }}=\sum_{n} \sigma_{\text {capture }, n}
$$

After calculation we get for capture cross-section the following graph (Figure 6).

Figure 6: Analytical estimation of cross-sectionof electron capture byfullerene C_{60}^{+1} ion.
Thus, the maximum capture cross-sections are expected at electron energies less about few eV .

We are also interested in caprure cross-sections on ordinary surface-localized electron levels.
Becausetheseelectronwavefunctionsarelocalizedinthinlayerinthevicinityoffullerenespheresurf
ace, then the modules of matrix elements of transition amplitude should be less compared to amplitutudes of transitions on volume-localized electron levels formed by Coulomb field of fullerene ion.

Following the results of the paper [Ошибка! Закладка не определена.], the wave functions of delocalized electrons are estimated as

$$
\begin{equation*}
\psi_{n} \approx A \exp \left[-\frac{|r-6.63|}{1.0}\right], \tag{20}
\end{equation*}
$$

that is they are exponentially vanish in thin layer in the vicinity of fullerene sphere surface.
The Figure 7 shows VLEL wave function calculated with the use of simplified sphericalmodel ($n=50$) andapproximate presentation of SLEL wave function on the basis of the paper [6] after their normalization. OnecanseethatthemaximumamplitudeofSLEL is larger compared to VLEL if we do not consider a fullerene center where the wave function has the integrable singularity. However, duetothecircumstancethattheVLELwavefunction is sinusoidal-like with wave vector from Equation 6, there are the basis for the conclusion that the electron capture cross-section will be larger for VLEL. It is supported by calculations which show that the capture probability on VLELs is $5 \div 10$ times higher in comparison to the capture probability on SLELs.

There is alternative approach to esimate the electron capture cross-section. The general rule connects together the electron recombination (that is the capture) and the photoionization cross-sections using that these phenomena are mutually inverse reactions, see [19] for example:

Figure 7:Thenormalizedwave functions for volume-localized electron level with principal quantum numbern $=50$ andsurface-localized electron level of fullerene.

$$
\begin{equation*}
\sigma_{\text {recomb }}=\sigma_{\text {photoion }} \frac{g_{i}}{g_{k}} \frac{2 h^{2} \omega^{2}}{4 \pi^{2} m_{e}^{2} c^{2} V^{2}}, \tag{21}
\end{equation*}
$$

where $\sigma_{\text {recomb }}$ isthe recombination cross-section, $\sigma_{\text {phototion }}$ - the photoionization cross-section, h - the Planck constant, ω - the angular frequency of photon, c-the speed of light, m_{e} - the electron mass, V - the electron velocity, g_{i} and g_{k}-the statistical weight factors of the photoionization and recombined states respectively. This expression is derived from the detailed partial photoionization cross-section treatmentusing so called the detailed equilibrium principle.So, the larger the photoionization cross-section the larger the recombination cross-section and inversly.

The analysis of photoionization cross-sections data, see [4-7,20] together with Equation 21 leads us to the conclusion that the electron capture cross-sections as much as $10^{-16} \div 10^{-}$ ${ }^{15} \mathrm{~cm}^{2}$ are possible.In the work [21] the recombination cross-sections of the order of 10^{-} ${ }^{15} \mathrm{~cm}^{2}$ for the electron energy of few eVwere obtained from theoretical considerations. These results are in accordance with our predictions.

If the energy of incident electron $E=100 \mathrm{eV}$, the electron momentum will be $p \approx$ $0.54 \cdot 10^{-23} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, and its velocity $\mathrm{V}=p / m_{e} \approx 5.4 \cdot 10^{6} \mathrm{~m} / \mathrm{s}$. The electron wave vector is equal to

$$
\begin{equation*}
\bar{k}=\bar{p} / \hbar \approx 0.5 \cdot 10^{11} \mathrm{~m}^{-1} \tag{21}
\end{equation*}
$$

Hence, $k r_{f} \approx 17$. It should be expected (Figure 7), that maximum amplitudes of capture to levels formed by Coulomb field will take place at $k r_{f} \approx \pi / 2$, that is at k one order of magnitude less. For this reason, the maximum of capture cross-section should be at electron energy $E \sim 1$ eV which is observed in Figure 6. The location of this maximum does not depend on ionization extent of fullerene ion.

The calculation of dipole moments of spontaneous transitions from volume-localized electron levels to other levels of fullerene ions

The dipole electric moment of electron transitionfromthestate $n_{1} l_{1} m_{1}$ tothestate $n_{2} l_{2} m_{2}$ is written by the definition as

$$
\begin{equation*}
\bar{d}_{n_{2} l_{2} m_{2}, n_{1} l_{1} m_{1}}=e\left\langle\psi_{n_{2} l_{2} m_{2}}\right| \bar{r}\left|\psi_{n_{1} l_{1} m_{1}}\right\rangle, \tag{22}
\end{equation*}
$$

Wherethe wavefunctionsoffullereneion C_{60}^{+Z} (Figure 2) withintheboundsof simplified spherical model are represented as the product of radial and spherical functions.

ThedipoleelectricmomentinCartesiansystemofcoordinates (we omitthe multiplier e - the electron charge) is presentedby 3-foldintegral (Figure 2):

$$
\begin{gathered}
\bar{d}_{n_{2} l_{2} m_{2}, n_{1} l_{m_{1}}}= \\
=\int_{0}^{\infty} r^{2} d r R_{n_{1} l_{1}}(r) R_{n_{2} l_{2}}(r) \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{l_{1} m_{1}}(\theta, \varphi) Y_{l_{2} m_{2}}(\theta, \varphi)[r \sin \theta \cos \varphi \hat{x}+r \sin \theta \sin \varphi \hat{y}+r \cos \theta \hat{z}],
\end{gathered}
$$

where $\hat{x}, \hat{y}, \hat{z}$ are the unit vectorsalong correspondingaxes.
Theexpfressionsfordipoleelectricmomentforelectrontransitionfromthestate $n_{l} l_{l} m_{l}$ tothe state $n_{2} l_{2} m_{2}$ includes only x - and z-components (Figure 2):

$$
\begin{equation*}
\bar{d}_{n_{2} l_{m} m_{2}, n_{1} m_{m_{1}}}=d_{x} \hat{x}+d_{z} \hat{z} . \tag{24}
\end{equation*}
$$

Thedipolemomentsarenon-zero for the next transitions:
Letthemagneticquantumnumber $m_{1}=0$ in initial state $n_{1} l_{1} m_{1}$. Thenthe x -componentof dipole moment d_{x} is non-zerowhen $m_{1}= \pm 1$. Taking into account normalization of spherical functions (see Appendix 2) it equals to

$$
\begin{equation*}
d_{x}=a\left(n_{1}, l_{1}, n_{2}, l_{2}\right) \cdot \pi K_{0}\left(l_{1}\right) K_{1}\left(l_{2}\right) \cdot \int_{-1}^{1} d t P_{l_{1}}^{0}(t)\left[-l_{2} t P_{l_{2}}^{0}(t)+l_{2} P_{l_{2}-1}^{0}(t)\right] \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
& a\left(n_{1}, l_{1}, n_{2}, l_{2}\right)=\int_{0}^{\infty} r^{3} d r R_{n_{1} l_{1}}(r) R_{n_{2} l_{2}}(r) \\
& K_{0}(l)=\frac{\sqrt{2 l+1}}{\sqrt{4 \pi}} \tag{26}\\
& K_{m}(l)=\sqrt{\left(\frac{(l-|m|) \cdot}{(l+|m|)}\right)} \frac{\sqrt{2 l+1}}{\sqrt{2 \pi}}
\end{align*}
$$

Let $m_{1}=m \neq 0$. Then

$$
\begin{equation*}
d_{x}=a\left(n_{1}, l_{1}, n_{2}, l_{2}\right) \cdot \pi K_{m}\left(l_{1}\right) K_{m+1}\left(l_{2}\right) \cdot \int_{-1}^{1} d t P_{l_{1}}^{m}(t)\left[-\left(l_{2}-m\right) t P_{l_{2}}^{m}(t)+\left(l_{2}+m\right) P_{l_{2}-1}^{m}(t)\right] \tag{27}
\end{equation*}
$$

If $l_{1}=l_{2}-1$ thelasttermin square bracketsof (25) and (27) disappears.
Atthesametime, z-component of dipole moment is non-zero only for $m_{1}=m_{2}=m$ orfor $m_{1}=-m_{2}=m$ and equals to

$$
\begin{equation*}
d_{z}=a\left(n_{1}, l_{1}, n_{2}, l_{2}\right) \cdot \pi K_{m}\left(l_{1}\right) K_{m}\left(l_{2}\right) \cdot \int_{-1}^{1} d t \cdot t \cdot P_{l_{1}}^{m}(t) P_{l_{2}}^{m}(t) \tag{28}
\end{equation*}
$$

So,
fortransitionsbetweens-stateswithazimuthal andmagneticquantumnumbersequaltozero, only z-components will be non-zero and from (28) we get:

$$
\begin{equation*}
\left|\bar{d}_{n_{2} l_{m} m_{2}, n_{1} l_{1} m_{1}}\right|=d_{z}=\frac{1}{4} \int_{0}^{\infty} r^{3} d r R_{n_{1} 0}(r) R_{n_{2} 0}(r) \tag{29}
\end{equation*}
$$

Butthesetransitionsbetweens-statesof VLELs are excluded due to selection rules. For this reason it is necessary to take into account either transitions from s-states ofVLELonSLELwith azimuthal $l=1$ or transitions between p-states of VLELs (seeAppendix 1) ands-statesof VLELs, seeTablesbelow.

The probability of spontaneous radiation per unit time at dipole transition is equal to

$$
\begin{equation*}
P_{n_{2} l_{2} m_{2}, n_{1}, m_{1}}=\frac{2 \omega^{3}}{3 \hbar c^{3} 4 \pi \varepsilon_{0}}\left|\bar{d}_{n_{2} l_{2} m_{2},\left.n_{1} m_{1}\right|_{1}}\right|^{2} \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\hbar \omega=E_{n_{1} l_{1} m_{1}}-E_{n_{2} l_{2} m_{2}},\left|\bar{d}_{n_{2} l_{2} m_{2}, n_{1} l_{1} m_{1}}\right|^{2}=d_{x}^{2}+d_{z}^{2} \tag{31}
\end{equation*}
$$

AttransitiontoSIsystemthe calculated dipole moments should be multiplied by

$$
\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e}
$$

So, theprobabilityofspontaneousradiationperunittimeandthe
characteristic timeofspontaneousradiationare

$$
\begin{aligned}
& P_{n_{2} l_{2} m_{2}, n_{1} l_{1} m_{1}}=\left.\frac{8 \pi \omega^{3} \hbar^{3} \varepsilon_{0}}{3 c^{3} m_{e}^{2} e^{2}} \bar{d}_{n_{2} l_{2} m_{2}, n_{l} m_{1}}\right|^{2} \\
& \tau=\frac{1}{P_{n_{2} l_{2} m_{2}, n_{1} l_{1} m_{1}}}
\end{aligned}
$$

where thedipolemomentsareexpressedinatomicunitsas previously.
Due to big size of fullerene the dipole moments of transitions will be considerably larger and characteristic lifetimes of electron states will considerably less in comparison to transitions in ordinary molecules.Also, onecanmaketheassumptionanalogoustocalculationofprobabilityofelectron capture in corresponding subsection that the probability of recombination from VLEL to lower VLEL may be higher compared to probability of transition VLEL-SLEL. However, theispredictionisnot supportedbynumericalcalculations.

The dipole moments of spontaneous transitions calculated using the formula (22) for fullerene ions between VLELS Is1p и $J s(J<I)$ where $I=2,3,4 \ldots$ and $J=1,2,3 \ldots$ for $Z=+1, Z=+3, Z=+10$ are givenin Table 1, Table 2 and Table 3respectively. The three parameters: x-component of the dipole moment $\bar{d}_{n_{2} l_{m} m_{2}, n_{1} l_{1} m_{1}}$ [a.u.], the photon angular frequency $\omega\left[\mathrm{s}^{-1}\right]$ and the characteristic lifetime of the level $I p \tau[\mathrm{~s}]$ are presented in these Tables.

Table 1: The dipole moments of transitions, the angular frequency and the characteristic $I p$ level's lifetimefor the fullerene ion C_{60}^{+1}

	$I p$	$2 p$	$3 p$	$5 p$	$10 p$	$50 p$
$J s$						
SLEL		-0.24	0.80	0.66	0.44	0.20
		$5.6 \cdot 10^{15}$	$8.5 \cdot 10^{15}$	$1.0 \cdot 10^{16}$	$1.1 \cdot 10^{16}$	$1.1 \cdot 10^{16}$
	$3.2 \cdot 10^{-7}$	$8.4 \cdot 10^{-9}$	$7.8 \cdot 10^{-9}$	$1.5 \cdot 10^{-8}$	$6.5 \cdot 10^{-8}$	
$2 s$		0.57	0.64	0.48	0.26	
		-	$2.9 \cdot 10^{15}$	$4.3 \cdot 10^{15}$	$5.0 \cdot 10^{15}$	$5.2 \cdot 10^{15}$

		$4.3 \cdot 10^{-7}$	$9.8 \cdot 10^{-8}$	$1.2 \cdot 10^{-7}$	$3.5 \cdot 10^{-7}$
$3 s$	-	-	-1.49	-1.45	-1.32
			$1.5 \cdot 10^{15}$	$2.1 \cdot 10^{15}$	$2.3 \cdot 10^{15}$
			$4.7 \cdot 10^{-7}$	$1.7 \cdot 10^{-7}$	$1.6 \cdot 10^{-7}$
$5 s$	-	-	-	-0.80	-4.34
				$6.2 \cdot 10^{14}$	$8.2 \cdot 10^{14}$
		-	-	-	$2.2 \cdot 10^{-5}$
$10 s$				$3.2 \cdot 10^{-7}$	
					2.17
					$9.0 \cdot 10^{-5}$

Table 2:The dipole moments of transitions, the angular frequency and the characteristic $I p$ level's lifetimefor the fullerene ion C_{60}^{+3}

	Ip	$4 p$	$6 p$	$9 p$	$15 p$	$45 p$
Js						
SLEL		0.98	0.75	1.08	1.89	0.99
		$1.2 \cdot 10^{16}$	$1.8 \cdot 10^{16}$	$2.1 \cdot 10^{16}$	$2.2 \cdot 10^{16}$	$2.3 \cdot 10^{16}$
		$2.2 \cdot 10^{-9}$	$9.9 \cdot 10^{-10}$	$3.1 \cdot 10^{-10}$	$8.2 \cdot 10^{-11}$	$2.7 \cdot 10^{-10}$
$4 s$			-1.04	-0.76	-1.45	-0.98
		-	$6.5 \cdot 10^{15}$	$9.3 \cdot 10^{15}$	$1.1 \cdot 10^{16}$	$1.2 \cdot 10^{16}$
			$1.1 \cdot 10^{-8}$	$7.0 \cdot 10^{-9}$	$1.2 \cdot 10^{-9}$	$2.3 \cdot 10^{-9}$
$6 s$				0.93	1.76	1.0
		-	-	$2.9 \cdot 10^{15}$	$4.3 \cdot 10^{15}$	$5.1 \cdot 10^{15}$
				1.6•10 ${ }^{-7}$	$1.3 \cdot 10^{-8}$	$2.5 \cdot 10^{-8}$
$9 s$					1.81	0.78
		-	-	-	$1.5 \cdot 10^{15}$	$2.2 \cdot 10^{15}$

				$3.2 \cdot 10^{-7}$	$5.1 \cdot 10^{-7}$
$15 s$					
	-	-	-	-	0.41

Table 3:The dipole moments of transitions, the angular frequency and the characteristic $I p$ level's lifetimefor the fullerene ion C_{60}^{+10}

	$I p$	$6 p$	$10 p$	$30 p$	50p	$100 p$
Js						
SLEL		$\begin{aligned} & 0.24 \\ & 9.5 \cdot 10^{15} \\ & 6.8 \cdot 10^{-8} \end{aligned}$	$\begin{aligned} & \hline-2.43 \\ & 4.6 \cdot 10^{16} \\ & 5.7 \cdot 10^{-12} \end{aligned}$	$\begin{aligned} & 4.22 \\ & 6.5 \cdot 10^{16} \\ & 6.9 \cdot 10^{-13} \end{aligned}$	$\begin{aligned} & \hline 4.38 \\ & 6.6 \cdot 10^{16} \\ & 6.0 \cdot 10^{-13} \end{aligned}$	$\begin{aligned} & 4.11 \\ & 6.7 \cdot 10^{16} \\ & 6.6 \cdot 10^{-13} \end{aligned}$
$6 s$		-	$\begin{aligned} & \hline 0.30 \\ & 3.7 \cdot 10^{16} \\ & 7.4 \cdot 10^{-10} \end{aligned}$	$\begin{aligned} & 1.36 \\ & 5.5 \cdot 10^{16} \\ & 1.1 \cdot 10^{-11} \end{aligned}$	$\begin{aligned} & \hline 1.04 \\ & 5.7 \cdot 10^{16} \\ & 1.7 \cdot 10^{-11} \end{aligned}$	$\begin{aligned} & \hline 0.76 \\ & 5.7 \cdot 10^{16} \\ & 3.0 \cdot 10^{-11} \end{aligned}$
$10 s$		-	-	$\begin{aligned} & -1.94 \\ & 1.8 \cdot 10^{16} \\ & 1.4 \cdot 10^{-10} \end{aligned}$	$\begin{aligned} & \hline-2.31 \\ & 2.0 \cdot 10^{16} \\ & 7.9 \cdot 10^{-11} \end{aligned}$	$\begin{aligned} & -2.38 \\ & 2.1 \cdot 10^{16} \\ & 6.8 \cdot 10^{-11} \end{aligned}$
30 s		-	-	-	$\begin{aligned} & -3.73 \\ & 1.5 \cdot 10^{15} \\ & 7.5 \cdot 10^{-8} \end{aligned}$	$\begin{aligned} & -3.64 \\ & 2.1 \cdot 10^{15} \\ & 2.7 \cdot 10^{-8} \end{aligned}$
$50 s$		-	-	-	-	$\begin{aligned} & \hline-2.58 \\ & 6.2 \cdot 10^{14} \\ & 2.1 \cdot 10^{-6} \end{aligned}$

FromthepresentedTablesonecanseethatthe calculated dipole moments depend on fullerene ionization extent, initial and final electron state, and are varied inbroadrange from
about 0.2 to 5 in atomic system of units. Basically, the dipole moments of transition VLELSLEL are of the same order of magnitude as the dipole moment of transition VLEL-VLEL.

The analysis of possibility of coherent radiation generation on fullerene C $_{60} \mathrm{ions}_{\text {V }}$ VLELs

The analysis conducted in previous Sections gives ground to use the extraordinary properties of fullerene ions for coherent radiation generation.

There is a principal possibility to get the coherent radiation using the medium containing two parts of particles: excited fullerene C_{60}^{+Z} ions having with one electron at VLEL staten $n_{1} l_{1} m_{1}$ (state 1) and excited fullerene C_{60}^{+Z} ions with one electron at VLEL state $n_{2} l_{2} m_{2}$ (state 2) or fullerene C_{60}^{+Z} ions in equilibrium state. The quantum energy level 1 is higher than the level 2.

Let us introduce the following designations: n_{1} is the concentration of excited fullereneions with electrons at the state $1, \omega$ and λ - the radiation frequency and corresponding wavelength at transition $l \rightarrow 2$,

To estimate the inverse concentration n_{1} needed for attainment of generation threshold for coherent radiation at VLELs we cah use a simple formulation:

$$
\mu_{\omega} L_{a b s} \gg 1
$$

where

$$
\mu_{\omega}=\frac{\lambda^{2}}{2 \pi} n_{1} \frac{\Delta \omega}{\Delta \omega_{s p}}
$$

Here μ_{ω} is the coefficient of resonance amplification per unit length;
$L_{a b s}$ - theabsorption length of photons;
$\Delta \omega_{s p}$ - the width of dipole spontaneous radiation line.
$\Delta \omega$ - thetotalbroadeningofemissionlineduetoDopplereffect, collisions, radiationless losses and spontaneous radiation: $\Delta \omega=\Delta \omega_{\text {dop }}+\Delta \omega_{\text {col }}+\Delta \omega_{n r}+\Delta \omega_{s p}$.

To reachthe generation threshold it is necessaryto have

$$
n_{1} \gg \frac{2 \pi}{\lambda^{2} L_{a b s}} \frac{\Delta \omega_{s p}}{\Delta \omega}
$$

Theabsorptionspectrum of fullerene gas C_{60} was investigated in the paper [22]. According to experimentally obtained data given in this paper the absorption cross-section is about $\sigma_{\mathrm{abs}} \sim(1 \div 5) \cdot 10^{-15} \mathrm{~cm}^{2}$ in the wavelength range $\lambda=200 \div 400 \mathrm{~nm}$.

The length of absorption is equal to

$$
L_{a b s} \approx \frac{1}{n_{\text {full }} \sigma_{a b s}}
$$

where the concentration of neutral fullerenes $n_{\text {ful }} 10^{17} \mathrm{~cm}^{-3}=10^{23} \mathrm{~m}^{-3}$ for fullerene gas at the temperatute $\mathrm{T} \cong 700^{\circ} \mathrm{C}$.

Basically, for the estimation we may put $\Delta \omega_{\mathrm{sp}} \sim \Delta \omega$. If we use the characteristic value for the wavelength $\lambda \sim 10^{-9} \div 10^{-7} \mathrm{~m}$ which corresponds to $\omega \sim 5 \cdot 10^{14} \div 5 \cdot 10^{16} 1 / \mathrm{s}$ (see Tables $1-3$) then the generation threshold for inverse level concentration will be in the range

$$
n_{1} \gg 6 \cdot 10^{8} \div 6 \cdot 10^{12} \mathrm{~cm}^{-3}
$$

which is possible because the concentration of fullerene ions C_{60}^{+Z} under the electron beam interaction conditions diminishes by about one order of magnitude with growth of ionization degree Z by unity and the electron capture cross-sections are large enough.

For example, if the gas with concentration of neutral fullerenes about $n_{\text {full }}=10^{17} \mathrm{~cm}^{-3}$ then, according to results of electron capture calculations, it is possible to get the concentration of C_{60}^{+Z} ions about

$$
n_{f}^{+3} \approx 10^{14} \mathrm{~cm}^{-3} .
$$

Thus, the estimations show that the medium containing fullerene C_{60}^{+Z} ions may be used for the generation of coherent radiation.

Conclusions

The existence of volume-localized electron levels (VLELs) of fullerene ions C_{60}^{+Z} is proven on the basis of simplified quantum-mechanical consideration of fullerene ion. These levels arise in Coulomb potential well formed inside fullerene after its ionization. The simplified calculation of VLELs wave functions is conducted using the fullerene sphere model. The basic parameters of VLELs including energy and spatial functional dependencies are obtained. To get those characteristics the analytical dependencies of wave functions inside and outside the fullerene sphere are used which are sewn on the sphere. We use the model proposition that the charge is uniformly distributed on the sphere that is the simplified spherical model approach.

The analysis of electron capture during the interaction of electron beam with the medium consistent of fullerenes ions C_{60}^{+Z} is conducted as the application of the methods developed.

Thecalculation estimationsdoneshowthattheelectroncapturecross-sections for capture on VLELs are about one order of magnitude larger compared to capturecross-sections on ordinary SLELsat electron energy of the order 10 eV and is about $10^{-19} \mathrm{~m}^{2}$.

The calculations of dipole moments for transitions from fullerene ions VLELs to other VLELs and to SLELs are also conducted. The calculated dipole moments depend on fullerene ionization extent, initial and final electron state, and are varied from about 0.2 to 5 in atomic system of units.

The unique features of fullerenes give ground to new interesting opportunities. The principal possibility of coherent radiation generation on fullerene ions VLELs is discussed.

Acknowledgments

The authors would like to express gratitude to participants of seminar at Laboratory of Theoretical Physics, Nuclear Safety Institute (IBRAE), Moscow, for numerous valuable discussions.

References

[1] H.W.Kroto, J.R.Health, S.C.O'Brianet al.,"Buckminster-Fullerene", Nature, 1985, V. 381, P. 162-163.
[2] E.B.Campbell Eleanor,"Fullerene Collisions Reactions", Kluwer Academic Publishers, Dordrecht, Netherlands, 2003, 209 pp.
[3] H.Deutsch, P.Scheier, K.Becker, T.D.Mark,"A Semi-Empirical Concept of ElectronImpact Ionization Cross-Sections of Neutral and Ionized Fullerenes", Int. J. Mass Spectrometry, 2003, V. 223-224, P. 1-8.
[4] P.Scheier, H.Deutsch, K.Becker, T.D.Mark,"A Semi-Empirical Method for the Calculation of Cross Sections for the Electron-Impact Ionization of Negatively Charged Fullerenes", Int. J. Mass Spectrometry, 2003, V. 223-224, P. 703-711.
[5] V.K.Ivanov, G.Yu.Kashenok, R.G.Polozkov, A.V. Solov' yov,"The Method to Calculate Fullerenes Photoionization Cross-Sections on the Basis of Local Density and Random Phases Approximation", JETF, 2003, V. 123, issue. 4, p. 744-756. (In Russian).
[6] V.K.Ivanov, G.Yu.Kashenock, R.G.Polozkov, A.V. Solov'yov, "Photoionization Cross Sections of the Fullerenes C_{20} and C_{60} Calculated in a Simple Spherical Model", J. of Physics B: Atomic, Molecular and Optical Physics, 2001, V. 34, L669L677.
[7] A.S.Baltenkov, S.T.Manson, A.Z.Mcesanne,"Jellium Model Potentials for the C 60 molecule and the photoionization of endohedral atoms A @ C_{60} ", J. Phys. B: At. Mol. Opt. Phys. 2015, V. 48. doi: 10.1088/0953-4075/48/18/185103. P. 1-15.
[8] A.Moradi,"Optical Scattering by a Spherical Two-Dimensional Electron Gas:
Application to the C_{60} molecule",Optik, 2012, V. 123, P. 325-328.
[9] R.V.Arutyunyan,"Theoretical Investigation of Electronic Properties of Highly Charged Fullerenes". Preprint IBRAE-2018-08, Nuclear Safety Institute, Moscow, 2018, 14 pp.https://arxiv.org/abs/1805.08016. (In Russian).
[10] G.S.Iroshnikov,"The calculation of recharging reaction cross-section during fullerenes collisions", JETF, 2006, V. 130, вып.5(11), с. 816-819.(In Russian).
[11] G.Senn, T. D.Mark, and P.Scheier,"Charge Separation Processes of Highly Charged Fullerene Ions",J. Chem. Phys., V. 108, No. 3, 15 January 1998.
[12] V. R.Bhardwaj, P. B.Corkum and D.M.Rayner,"Internal Laser-Induced Dipole Force at Work in C_{60} Molecule",Physical Review Letters, V. 91, N. 20, 2003.
[13] K.Nakai, H.Kono, Y.Sato et al.,"Ab Initio Molecular Dynamics and Wavepacket Dynamics of Highly Charged Fullerene Cations Produced with Intense Near-Infrared Laser Pulses", Chemical Physics, 2007, V. 338, p. 127-134.
[14] M.Wierzbowska, M.Lueders, E.Tosatti,"Multiplet Structures of Charged Fullerenes", J. Phys. B: At. Mol. Phys. May 2004, V. 2.
[15] S. Diaz-Tendero, M.Alcami and F.Martin,"Coulomb Stability Limit of Highly Charged Cq+60 Fullerenes", Physical Review Letters, PRL 95, 013401 (2005).
[16] H.Zettergren, G.Sánchez, S.Díaz-Tendero et al.,"Theoretical Study of the Stability of Multiply Charged C ${ }^{70}$ Fullerenes",J. of Chemical Physics, V. 127, 104308 (2007).
[17] R.A.Ganeev, P.A.Naik, H.Singhalet al., Use of Carbon-Containing Materials for Efficient High-Order Harmonic Generation of Laser Radiation. Optics Communications, 2012, V. 285, p. 2934-2941.
[18] L.D.Landau, E.M.Lifshitz,"Quantum mechanics. Non-relativistic Theory (Series: Theoretical Physics, V. 3)", Moscow, FizMatLit, 2004, 800 pp. (In Russian).
[19] S.N.Nahar,"Photoionization and electron-ion recombination of Ti I", New Astronomy, 2016, V. 46, P. 1-8.
[20] M.Ya.Amusia, A.S.Baltenkov and B.G.Krakov,"Photodetachment of negative C_{60}^{-} ions", Physics Letters A, 1998, V. 243, P. 99-105.
[21] E.Tosatti, N.Manini,"Anomalous Attachment of Low-Energy Electrons to C60", Chemical Physical Letters, 1994, V. 223, P. 61-64.
[22] Q.Gong, Y.Sun, Z.Huang et al.,"Absorption Spectrum of Gas-Phase C_{60} in the 200400 nm Region", J. of Physics B: Atomic, Molecular and Optical Physics, 1994, V. 27, p. 199-201.

Appendix1.Expressionsforradialfunctionswithazimuthalnumber $l>0$ and the presentation of wave functions outside fullerene sphere

Considerthe
quantumstateswith $l>0$,
$l \leq n-1$.

Todeterminecorrespondingwavefunctionsitisconvenienttousethefollowingrecurrentexpression :

$$
\begin{aligned}
& R_{n l}=r^{l} \chi_{n l} \\
& \chi_{n, l+1}=\frac{1}{r} \frac{d \chi_{n l}}{d r}
\end{aligned}
$$

From which it iseasy togetall $R_{n l}$ in consecutive order onceyouknow $R_{1 l}$.
For example, inside fullerene ($r<6.63$) we have:

$$
\begin{gather*}
R_{n 0}=\frac{\sin \left[k_{n} r\right]}{r}, \\
R_{n 1}=-\frac{\sin \left[k_{n} r\right]}{r^{2}}+\frac{k_{n}}{r} \cos \left[k_{n} r\right], \tag{32}\\
R_{n 2}=\frac{\sin \left[k_{n} r\right]}{r^{3}}\left[3-k_{n}^{2} r^{2}\right]-\frac{3 k_{n}}{r^{2}} \cos \left[k_{n} r\right], \\
R_{n 3}=\frac{\sin \left[k_{n} r\right]}{r^{4}}\left[6 k_{n}^{2} r^{2}-15\right]+\frac{k_{n}}{r^{3}}\left[15-k_{n}^{2} r^{2}\right] \cos \left[k_{n} r\right], \text { etc. }
\end{gather*}
$$

Here

$$
k_{n}=\sqrt{2\left(E_{n}+\frac{Z}{r_{f}}\right)}
$$

Analogousexpressioncanbeconsecutivelyobtainedifcos $\left[k_{n} r\right] / r$ is given as $R_{n 0}$.
Theanalysisofexpressions (32) showsthatall $R_{n 1}$ satisfy the conditions of finiteness of integral from wave function module square. Thisiswhyasimptoticsoffunctions $R_{n 1}$ atr r is as following:

$$
R_{n l} \approx \frac{2 k_{n}^{l+1}}{(2 l+1)!!} r^{l}
$$

Thenwavefunctionsinsideandoutsidefullerenesphereshouldbesewntoensurecontinuityof wave function and its first derivative (it is practically useful to equate logarithmic derivative of wave function inside and outside sphere), see Figure 8.

ThisdiscussionleadsustotheconclusionthatthewaveeigenfunctionsofVLELsare the expressions (8) for azimuthal and magnetic quantum numbers l and m equal to 0 . For $l>0$
theexpressions $R_{n 1}$ from (32) serveasradialpartsofVLELsbecause they have integrated singularity at $r=0$.

We use the following quantity as an energy unit

$$
\begin{equation*}
\frac{m_{e} e^{4}}{\hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}} \approx 27.21 \ni \mathrm{~B} \tag{33}
\end{equation*}
$$

Inanycasethespatialdependenciesofwavefunctionswith $=0$ have the maximum in the center of fullerene spheroid as it is shown in Figure 8.

Considerinmoredetailthe solutions for wave functions outside the fullerene sphere, see Equation 4. Rewrite this equation for the case $l=0$:

$$
\begin{equation*}
\frac{d^{2} R_{n 0}}{d r^{2}}+\frac{2}{r} \frac{d R_{n 0}}{d r}+\frac{2 Z}{r} R_{n 0}=-2 E_{n 0} R_{n 0} \tag{34}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d}{d r}\left(r^{2} \frac{d R_{n 0}}{d r}\right)+2 Z r R_{n 0}=-2 E_{n 0} r^{2} R_{n 0} \tag{35}
\end{equation*}
$$

Realizing the following substitute

$$
\begin{equation*}
u_{n 0}=R_{n 0} r \tag{36}
\end{equation*}
$$

we get

$$
\begin{equation*}
\frac{d^{2} u_{n 0}}{d r^{2}}+2 Z \frac{u_{n 0}}{r}=-2 E_{n 0} u_{n 0}, \tag{37}
\end{equation*}
$$

After substitution $\hat{r}=2 r$ this equation transforms to the following view:

$$
\begin{equation*}
\frac{d^{2} u_{n 0}}{d \hat{r}^{2}}+Z \frac{u_{n 0}}{\hat{r}}=-\frac{E_{n 0}}{2} u_{n 0} . \tag{38}
\end{equation*}
$$

Inthecaseofinequality $-r E_{n 0} \gg Z$ that is at rather large distances from the centre the following equation will be valid:

$$
\begin{equation*}
\frac{d^{2} u_{n 0}}{d \hat{r}^{2}}=-\frac{E_{n 0}}{2} u_{n 0}, \tag{39}
\end{equation*}
$$

which has the next solutions:

$$
\begin{equation*}
u_{n 0}=e^{-\hat{r} \sqrt{-\frac{E_{n 0}}{2}}}, u_{n 0}=e^{+\dot{r} \sqrt{-\frac{E_{n 0}}{2}}}, \tag{40}
\end{equation*}
$$

The second solution is excluded, because it tends to infinity at large distances. We look now for the solutionin the form

$$
\begin{equation*}
u_{n 0}=f_{n 0}(\hat{r}) e^{-\hat{r}} \sqrt{-\frac{E_{n 0}}{2}} \tag{41}
\end{equation*}
$$

Then for $f_{n 0}(\hat{r})$ it is valid

$$
\begin{equation*}
\frac{d^{2} f_{n 0}}{d \hat{r}^{2}}-2 \sqrt{-\frac{E_{n 0}}{2}} \frac{d f_{n 0}}{d \hat{r}}+\frac{Z f_{n 0}}{\hat{r}}=0 \tag{42}
\end{equation*}
$$

After next substitute

$$
\begin{equation*}
\hat{r}=\frac{1}{\sqrt{-2 E_{n 0}}} x \tag{43}
\end{equation*}
$$

we get

$$
\begin{equation*}
\frac{d^{2} f_{n 0}}{d x^{2}}-\frac{d f_{n 0}}{d x}+\frac{Z}{\sqrt{-2 E_{n 0}}} \frac{f_{n 0}}{x}=0 \tag{44}
\end{equation*}
$$

Letusdesignate

$$
\begin{equation*}
\xi_{n 0}=\frac{Z}{\sqrt{-2 E_{n 0}}} \tag{45}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d^{2} f_{n 0}}{d x^{2}}-\frac{d f_{n 0}}{d x}+\xi_{n 0} \frac{f_{n 0}}{x}=0 \tag{46}
\end{equation*}
$$

The Equation 46 has the solution limited at $x \rightarrow \infty$ only for integer $\zeta_{\mathrm{n} 0}=1,2,3 \ldots$ Forthesolutionofthisequationitisconvenienttosearch the solution in the form of infinite set:

$$
\begin{equation*}
f_{n 0}(x)=\sum_{i=n}^{\infty} a_{i} x^{i} \tag{47}
\end{equation*}
$$

Substituting (43) into (42) we get:

$$
\begin{equation*}
\sum_{i=n}^{\infty}\left[i(i-1) a_{i} x^{i-2}-i a_{i} x^{i-1}+\xi_{n 0} a_{i} x^{i-1}\right]=0 . \tag{48}
\end{equation*}
$$

Bysubstitutingofsummationindex $i=j+1$ werepresenthesumonfirst term in square brackets this way:

$$
\begin{equation*}
\sum_{i=n}^{\infty} i(i-1) a_{i} x^{i-2}=\sum_{j=n-1}^{\infty} j(j+1) a_{j+1} x^{j-1} . \tag{49}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
n(n-1) a_{n}+\sum_{i=n}^{\infty}\left[i(i+1) a_{i+1} x^{i-1}-i a_{i} x^{i-1}+\xi_{n 0} a_{i} x^{i-1}\right]=0 . \tag{50}
\end{equation*}
$$

Lettheprincipalquantumnumberbe $n=1$. We can choose $a_{1}=1$. Then we get the following recurrence formula for determination of coefficients a_{i} :

$$
\begin{equation*}
a_{1}=1 ; \quad a_{i+1}=\frac{\left(i-\xi_{10}\right)}{i(i+1)} a_{i} \tag{51}
\end{equation*}
$$

that is

$$
\begin{equation*}
a_{1}=1 ; \quad a_{i}=\frac{\left(i-1-\xi_{10}\right) \cdot\left(i-2-\xi_{10}\right) \cdot \ldots \cdot\left(2-\xi_{10}\right) \cdot\left(1-\xi_{10}\right)}{n \cdot(n-1)!\cdot(n-1)!} \tag{52}
\end{equation*}
$$

Lettheprincipal quantum number now be $n>1$. Then

$$
\begin{array}{ll}
a_{i}=0, & i \leq n ; \\
a_{n+1}=1 ; & a_{i+1}=\frac{\left(i-\xi_{10}\right)}{i(i+1)} a_{i}, \quad i>n \tag{5}
\end{array}
$$

Ifthe azimuthalquantumnumberlismorethan 0 , then the radial part of wave function satisfies to the following equation:

$$
\begin{equation*}
\frac{d^{2} f_{n l}}{d x^{2}}-\frac{d f_{n l}}{d x}+\zeta_{n l} \frac{f_{n l}}{x}-\zeta_{n l}^{2} l(l+1) \frac{f_{n l}}{x^{2}}=0 . \tag{55}
\end{equation*}
$$

Look for solution in the form

$$
\begin{align*}
& f_{n l}(x)=\sum_{i=n}^{\infty} a_{i} x^{i} n=l+1, l+2, \ldots \tag{56}\\
& a_{1}=0, a_{2}=0, a_{3}=1, a_{i+1}=\frac{\left(i-\xi_{n l}\right)}{i(i+1)-\xi_{n l}^{2} l(l+1)} a_{i} .
\end{align*}
$$

Forradialfunctions $R_{n l}(r)$ the following condition of normalization is valid:

$$
\begin{array}{ll}
\int_{0}^{\infty} r^{2} d r R_{n_{1} l_{1}}(r) R_{n_{2} l_{2}}(r)=0 & n_{1} \neq n_{2} \\
\int_{0}^{\infty} r^{2} d r R_{n_{1} l_{1}}(r) R_{n_{2} l_{2}}(r)=\delta_{l l_{2}} & n_{1}=n_{2},
\end{array}
$$

where $\delta_{i k}$ isa symbol of Kronecker.

Figure 8: The wave functions of VLELsof fullerene C_{60}^{+1} ion with different parameters ζ (principal quantum number), l (azimuthal quantum number) and η (the "sewing" parameter).

Appendix2.Asummaryofbasicformulasfor normalization of spherical functions

In expression for wave functionswith azimuthal numberlfor fullerene ion within the bounds of simplified spherical modelthereare $(2 l+1)$ independentsphericalfunctions:

$$
\begin{aligned}
& Y_{l m}(\theta, \varphi)=P_{l}^{m}(\cos \theta) \cos m \varphi, m=0,1 \ldots l \\
& Y_{l m}(\theta, \varphi)=P_{l}^{m}(\cos \theta) \sin |m| \varphi, m=-1,-2 \ldots-l,
\end{aligned}
$$

where $P_{l}^{m}(\cos \theta)$ are attached functions of Legendre:

$$
P_{l}^{m}(t)=\left(1-t^{2}\right)^{\left.\frac{|m|}{2} \right\rvert\,} \frac{d^{|m|}}{d t^{|m|}} P_{l}(t) .
$$

Here

$$
P_{l}(t)=\frac{1}{2^{l} l!} \frac{d^{l}}{d t^{l}}\left(t^{2}-1\right)^{l}
$$

- the Legendre polynomials.

The following recurrence formula takes place for them:

$$
(l+1) P_{l+1}(t)-(2 l+1) t P_{l}(t)+l P_{l-1}(t)=0,-1 \leq t \leq 1, \quad l \geq 0 .
$$

The normalization of spherical functionsisasfollowing:

$$
\begin{aligned}
& \left(Y_{l_{1} m_{1}}, Y_{l_{2} m_{2}}\right)=\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{l_{1} m_{1}}(\theta, \varphi) Y_{l_{2} m_{2}}(\theta, \varphi) \\
& \left(Y_{l_{1} m_{1}}, Y_{l_{2} m_{2}}\right)=\int_{0}^{2 \pi} d \varphi \cos m_{1} \varphi \cos m_{2} \varphi \int_{0}^{\pi} d \theta \sin \theta P_{l_{1}}^{m_{1}}(\cos \theta) P_{l_{2}}^{m_{2}}(\cos \theta) \\
& \left(Y_{l_{1} m_{1}}, Y_{l_{2} m_{2}}\right)=\int_{0}^{2 \pi} d \varphi \cos m_{1} \varphi \cos m_{2} \varphi \int_{-1}^{1} d t P_{l_{1}}^{m_{1}}(t) P_{l_{2}}^{m_{2}}(t) \\
& \left(Y_{l_{1} m_{1}}, Y_{l_{2} m_{2}}\right)=0 \quad \quad l_{1} \neq l_{2} \text { либо } m_{1} \neq m_{2} \\
& \left(Y_{l m}, Y_{l m}\right)=\frac{4 \pi}{2 l+1}, \quad m=0
\end{aligned}
$$

$$
\left(Y_{l m}, Y_{l m}\right)=\frac{(l+|m|)!}{(l-|m|)!} \cdot 2 \pi-2 l+1,1 \leq|m| \leq l
$$

So, toensurethenormalizationofsphericalfunction $Y_{l m}(\theta, \varphi)$, it is necessary to multiply it by a factor

$$
\begin{array}{ll}
\frac{\sqrt{2 l+1}}{\sqrt{4 \pi}}, & m=0, \\
\sqrt{\left(\frac{(l-|m|)!}{(l+|m|)}\right)} \frac{\sqrt{2 l+1}}{\sqrt{2 \pi}}, & 1 \leq|m| \leq l .
\end{array}
$$

